H-KLGGALQAK-OH
Ref. 3D-PP43331
1mg | 217,00 € | ||
10mg | 253,00 € | ||
100mg | 455,00 € |
Produktinformation
- NH2-Lys-Leu-Gly-Gly-Ala-Leu-Gln-Ala-Lys-OH
Peptide H-KLGGALQAK-OH is a Research Peptide with significant interest within the field academic and medical research. This peptide is available for purchase at Cymit Quimica in multiple sizes and with a specification of your choice. Recent citations using H-KLGGALQAK-OH include the following: DeepAIR: A deep learning framework for effective integration of sequence and 3D structure to enable adaptive immune receptor analysis Y Zhao , B He , F Xu, C Li , Z Xu, X Su, H He, Y Huang - Science , 2023 - science.orghttps://www.science.org/doi/abs/10.1126/sciadv.abo5128 TEINet: a deep learning framework for prediction of TCR-epitope binding specificity Y Jiang , M Huo, S Cheng Li - Briefings in Bioinformatics, 2023 - academic.oup.comhttps://academic.oup.com/bib/article-abstract/24/2/bbad086/7076118 Human thymopoiesis produces polyspecific CD8+ alpha/beta T cells responding to multiple viral antigens V Quiniou, P Barennes, V Mhanna, P Stys - Elife, 2023 - elifesciences.orghttps://elifesciences.org/articles/81274 Unseen Epitope-TCR Interaction Prediction based on Amino Acid Physicochemical Properties R Raha, Y Ding , Q Liu , FX Wu - 2022 IEEE International , 2022 - ieeexplore.ieee.orghttps://ieeexplore.ieee.org/abstract/document/9995066/ Enhancing TCR specificity predictions by combined pan-and peptide-specific training, loss-scaling, and sequence similarity integration MF Jensen, M Nielsen - Elife, 2024 - elifesciences.orghttps://elifesciences.org/articles/93934 NetTCR 2.2-Improved TCR specificity predictions by combining pan-and peptide-specific training strategies, loss-scaling and integration of sequence similarity MF Jensen, M Nielsen - bioRxiv, 2023 - biorxiv.orghttps://www.biorxiv.org/content/10.1101/2023.10.12.562001.abstract TCRpcDist: estimating TCR physico-chemical similarity to analyze repertoires and predict specificities MAS Perez, J Chiffelle , S Bobisse, F Mayol-Rullan - bioRxiv, 2023 - biorxiv.orghttps://www.biorxiv.org/content/10.1101/2023.06.15.545077.abstract ATM-TCR: TCR-epitope binding affinity prediction using a multi-head self-attention model M Cai, S Bang , P Zhang, H Lee - Frontiers in immunology, 2022 - frontiersin.orghttps://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2022.893247 Clonally focused public and private T cells in resected brain tissue from surgeries to treat children with intractable seizures JW Chang, SD Reyes, E Faure-Kumar - Frontiers in , 2021 - frontiersin.orghttps://www.frontiersin.org/articles/10.3389/fimmu.2021.664344/full Clonally Focused Public and Private T Cells in Resected Brain Tissue From Surgeries to JW Chang, SD Reyes, E Faure-Kumar - 2021 - scholar.archive.orghttps://scholar.archive.org/work/jxj6trqn2fczfi74ebpofb43fa/access/wayback/https://escholarship.org/content/qt4qh2m4x9/qt4qh2m4x9.pdf?t=qzpyuu TPBTE: A model based on convolutional Transformer for predicting the binding of TCR to epitope J Wu, M Qi , F Zhang, Y Zheng - Molecular Immunology, 2023 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0161589023000536 Machine Learning Prediction of TCR-Epitope Binding J Faust, YS Song - 2022 - eecs.berkeley.eduhttps://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-216.pdf DECODE: a computational pipeline to discover T cell receptor binding rules I Papadopoulou, AP Nguyen , A Weber - , 2022 - academic.oup.comhttps://academic.oup.com/bioinformatics/article-abstract/38/Supplement_1/i246/6617535 Predicting TCR sequences for unseen antigen epitopes using structural and sequence features H Zhang, H Ji, C Zhang, Z Qiong - 2024 - researchsquare.comhttps://www.researchsquare.com/article/rs-3891946/latest Predicting TCR sequences for unseen antigen epitopes using structural and sequence features H Ji, XX Wang, Q Zhang, C Zhang - Briefings in , 2024 - academic.oup.comhttps://academic.oup.com/bib/article-abstract/25/3/bbae210/7665592 Deep learning predictions of TCR-epitope interactions reveal epitope-specific chains in dual alpha T cells G Croce , S Bobisse, DL Moreno, J Schmidt - Nature , 2024 - nature.comhttps://www.nature.com/articles/s41467-024-47461-8 TCRfp: a new fingerprint-based approach for TCR repertoire analysis F Mayol-Rullan, M Bugnon , MAS Perez, V Zoete - bioRxiv, 2023 - biorxiv.orghttps://www.biorxiv.org/content/10.1101/2023.12.19.572261.abstract TAPIR: a T-cell receptor language model for predicting rare and novel targets E Fast , M Dhar, B Chen - bioRxiv, 2023 - ncbi.nlm.nih.govhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515850/ A comparison of clustering models for inference of T cell receptor antigen specificity D Hudson, A Lubbock, M Basham , H Koohy - ImmunoInformatics, 2024 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S266711902400003X STAPLER: efficient learning of TCR-peptide specificity prediction from full-length TCR-peptide data BPY Kwee, M Messemaker , E Marcus , G Oliveira - bioRxiv, 2023 - biorxiv.orghttps://www.biorxiv.org/content/10.1101/2023.04.25.538237.abstract
Chemische Eigenschaften
Technische Anfrage zu: 3D-PP43331 H-KLGGALQAK-OH
Wenn Sie ein Angebot anfordern oder eine Bestellung aufgeben möchten, legen Sie stattdessen die gewünschten Produkte in Ihren Warenkorb und fordern Sie dann ein Angebot oder eine Bestellung an aus dem Warenkorb. Es ist schneller, billiger und Sie können von den verfügbaren Rabatten und anderen Vorteilen profitieren.