
Silanos
Subcategorías de "Silanos"
Se han encontrado 1234 productos de "Silanos"
(TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)TRIMETHOXYSILANE
CAS:Fórmula:C11H13F13O3SiPureza:97%Forma y color:Straw LiquidPeso molecular:468.29Ref: 3H-SIT8176.0
Producto descatalogadoN-(2-AMINOETHYL)-3-AMINOPROPYLTRIETHOXYSILANE, 92%
CAS:Diamino Functional Trialkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
N-(2-Aminoethyl)-3-aminopropyltriethoxysilane; N-[3-(Triethoxysilyl)propyl]-1,2-ethanediamine; N-[3-(Triethoxysilyl)propyl]-ethylenediamine
Primary amine with an internal secondary amine coupling agent for UV cure and epoxy systemsUsed in microparticle surface modificationSlower hydrolysis rate than SIA0591.0 and SIA0592.6Fórmula:C11H28N2O3SiPureza:92%Forma y color:Straw LiquidPeso molecular:264.55PHENYLTRIS(DIMETHYLSILOXY)SILANE
CAS:Siloxane-Based Silane Reducing Agent
Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.
Phenyltris(dimethylsiloxy)silane; Phenyl hydride cross-linker; 3-[(Dimethylsilyl)oxy]-1,1,5,5-tetramethyl-3-phenyltrisiloxane
High molecular weight silane reducing agentCrosslinker for vinylphenylsilicone 2-component elastomersExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Fórmula:C12H26O3Si4Pureza:97%Forma y color:LiquidPeso molecular:330.68Ref: 3H-SIP6826.0
Producto descatalogado2-(2-PYRIDYLETHYL)TRIMETHOXYSILANE
CAS:2-(2-Pyridylethyl)trimethoxysilane, 2-(trimethoxysilylethyl)pyridine
Monoamino functional trialkoxy silaneUsed in microparticle surface modificationFórmula:C10H17NO3SiPureza:97%Forma y color:Straw Amber LiquidPeso molecular:227.33PENTYLMETHYLDICHLOROSILANE
CAS:Fórmula:C6H14Cl2SiPureza:97%Forma y color:Straw LiquidPeso molecular:185.1711-BROMOUNDECYLTRICHLOROSILANE, 95%
CAS:Fórmula:C11H22BrCl3SiPureza:95%Forma y color:Straw LiquidPeso molecular:368.64n-OCTYLTRIMETHOXYSILANE
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
n-Octyltrimethoxysilane; Trimethoxysilyloctane
Viscosity: 1.0 cStVapor pressure, 75 °: 0.1 mmTreatment for particles used in non-aqueous liquid dispersionsTrialkoxy silaneFórmula:C11H26O3SiPureza:97%Forma y color:Straw LiquidPeso molecular:234.41Ref: 3H-SIO6715.5
Producto descatalogado1-TRIMETHYLSILYLPROPYNE
CAS:Alkynylsilane Cross-Coupling Agent
The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.
1-Trimethylsilylpropyne; Propynyltrimethylsilane; 1-(Trimethylsilyl)prop-1-yne
Forms polymers with very high oxygen permeabilityUseful in Sonogashira reactionsPolymerization catalyzed with TaCl5/(C6H5)3BiConverts aldehydes to 1,3-dienes in presence of Cp2Zr(H)ClUsed in the preparation of alkynylxenon fluoridePolymeric version available, SSP-070Extensive review of silicon based cross-coupling agents: Denmark, S. E. et al. "Organic Reactions, Volume 75" Denmark, S. E. ed., John Wiley and Sons, 233, 2011Fórmula:C6H12SiPureza:97%Forma y color:Straw LiquidPeso molecular:112.25Ref: 3H-SIT8606.5
Producto descatalogado3-AMINOPROPYLTRIS(TRIMETHYLSILOXY)SILANE, 95%
CAS:Fórmula:C12H35NO3SiPureza:95%Forma y color:Straw LiquidPeso molecular:353.763-CHLOROPROPYLMETHYLDIETHOXYSILANE
CAS:3-Chloropropylmethyldiethoxysilane; methyldiethoxy(chloropropyl)silane; (3- chloropropyl)diethoxymethylsilane; 1-chloro-3-(methyldiethoxysilyl)propane
Halogen functional dialkoxy silaneIntermediate for functional silicone polymersFórmula:C8H19ClO2SiPureza:97%Forma y color:LiquidPeso molecular:210.77BIS(3-TRIMETHOXYSILYLPROPYL)-N-METHYLAMINE
CAS:bis(3-trimethoxysilylpropyl)-N-methylamine; N-methylaminobis(propyltrimethoxysilane)
Tertiary amino functional dipodal silaneDipodal analog of SIM6500.0Fórmula:C13H33NO6Si2Pureza:97%Forma y color:Straw LiquidPeso molecular:355.58DIPHENYLCHLOROSILANE, tech
CAS:Fórmula:C12H11ClSiPureza:techForma y color:Straw LiquidPeso molecular:218.76Ω-BUTYLPOLY(DIMETHYLSILOXANYL)ETHYLTRIETHOXYSILANE, tech
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
ω-Butylpoly(dimethylsiloxanyl)ethyltriethoxysilane; α-Butyl-ω-triethoxysilylethyl terminated polydimethylsiloxane
5-8 (Me2SiO)Hydrophobic surface treatmentFórmula:C24H52O3SiForma y color:Straw LiquidPeso molecular:416.761,2-BIS(TRIETHOXYSILYL)ETHYLENE, 92%
CAS:Olefin Functional Alkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
Dipodal Silane
Dipodal silanes are a series of adhesion promoters that have intrinsic hydrolytic stabilities up to ~10,000 times greater than conventional silanes and are used in applications such as plastic optics, multilayer printed circuit boards and as adhesive primers for ferrous and nonferrous metals. They have the ability to form up to six bonds to a substrate compared to conventional silanes with the ability to form only three bonds to a substrate. Many conventional coupling agents are frequently used in combination with 10-40% of a non-functional dipodal silane, where the conventional coupling agent provides the appropriate functionality for the application, and the non-functional dipodal silane provides increased durability. Dipodal silanes additives enhance hydrolytic stability, which impacts on increased product shelf life, ensures better substrate bonding and also leads to improved mechanical properties in coatings as well as composite applications.
1,2-Bis(triethoxysilyl)ethylene; 4,4,7,7-Tetraethoxy-3,8-dioxa-4,7-disiladec-5-ene
~80% trans isomerForms ethylene-bridged mesoporous silicasFórmula:C14H32O6Si2Pureza:92%Forma y color:LiquidPeso molecular:352.57DODECAMETHYLCYCLOHEXASILOXANE
CAS:Fórmula:C12H36O6Si6Pureza:97%Forma y color:LiquidPeso molecular:445.933-METHACRYLOXYPROPYLDIMETHYLCHLOROSILANE, tech
CAS:Fórmula:C9H17ClO2SiPureza:90%Forma y color:Straw LiquidPeso molecular:220.77n-OCTADECYLMETHYLDICHLOROSILANE, 97%
CAS:Fórmula:C19H40Cl2SiPureza:97% including isomersForma y color:Straw LiquidPeso molecular:367.52n-DECYLTRICHLOROSILANE
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
n-Decyltrichlorosilane; Trichlorosilyldecane; TrichlorodecylsilaneFórmula:C10H21Cl3SiPureza:97%Forma y color:Straw LiquidPeso molecular:275.72Ref: 3H-SID2663.0
Producto descatalogado11-CYANOUNDECYLTRICHLOROSILANE
CAS:Fórmula:C12H22Cl3NSiPureza:97%Forma y color:Straw LiquidPeso molecular:314.76LITHIUM HEXAMETHYLDISILAZIDE 1M in tetrahydrofuran
CAS:Fórmula:C6H18LiNSi2Forma y color:Yellow To Amber LiquidPeso molecular:167.33Ref: 3H-SIL6467.4
Producto descatalogado2-[(ACETOXY(POLYETHYLENEOXY)PROPYL]TRIETHOXYSILANE, 95%
CAS:Ester Functional Trialkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
Hydrophilic Silane - Polar - Hydrogen Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
2-[(Acetoxy(polyethyleneoxy)propyl]triethoxysilane; (Triethoxysilylpropylpolyethylene oxide)acetate
Viscosity: 50 cStFunctional PEG Silane (500-700 g/mol)PEO, Ester, Triethoxysilane termination utilized for hydrophilic surface modificationDual functional PEGylation reagentHydrogen bonding hydrophilic silaneUsed in microparticle surface modificationFórmula:CH3O(C2H4O)6-9(CH2)3Si(OCH3)3Pureza:95%Forma y color:Straw Amber LiquidPeso molecular:500-7001,3,5,7,9-PENTAMETHYLCYCLOPENTASILOXANE, 90%
CAS:Siloxane-Based Silane Reducing Agent
Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.
1,3,5,7,9-Pentamethylcyclopentasiloxane; D'5; Methyl hydrogen cyclic pentamer; 2,4,6,8,10-Pentamethylcyclopentasiloxane
ΔHvap: 47.3 kJ/molContains other cyclic homologsExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Fórmula:C5H20O5Si5Pureza:90%Forma y color:LiquidPeso molecular:300.64Ref: 3H-SIP6718.0
Producto descatalogadoTRIETHOXYSILYLUNDECANAL, tech
CAS:Aldehyde Functional Trialkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
Triethoxysilylundecanal
Treated surface contact angle, water: 70°Long chain coupling agent for DNAProvides greater stability for coupled proteins than shorter alkyl homologsLong chain homolog of triethoxysilylbutyraldehyde (SIT8185.3)Fórmula:C17H36O4SiPureza:techForma y color:Straw LiquidPeso molecular:332.561,5-DICHLOROHEXAMETHYLTRISILOXANE, tech
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
1,5-Dichlorohexamethyltrisiloxane; Hexamethyldichlorotrisiloxane; 1,5-Dichloro-1,1,3,3,5,5-hexamethyltrisiloxane
ΔHvap: 47.7 kJ/molVapor pressure, 50 °C: 1 mmFórmula:C6H18Cl2O2Si3Pureza:92%Forma y color:Straw Amber LiquidPeso molecular:277.37ISOTETRASILANE
CAS:Volatile Higher Silane
Volatile higher silanes are low temperature, high deposition rate precursors. By appropriate selection of precursor and deposition conditions, silicon deposition can be shifted from amorphous hydrogenated silicon toward microcrystalline silicon structures. As the number of silicon atoms increases beyond two, electrons are capable of sigma–sigma bond conjugation. The dissociative adsorption of two of the three hydrogen atoms on terminal silicon atoms has a lower energy barrier.
Isotetrasilane; (Trisilyl)silane; 2-Silyltrisilane
PYROPHORICAIR TRANSPORT FORBIDDEN?Hvap: 32.5 kJ/molPrecursor for low temp. epitaxy of doped crystalline siliconEmployed in low temperature CVD of amorphous siliconFórmula:H10Si4Pureza:98%Forma y color:Colourless LiquidPeso molecular:122.42HEXAMETHYLCYCLOTRISILOXANE, 98%
CAS:Hexamethylcyclotrisiloxane (HMCTS, D3)
Undergoes ring-opening anionic polymerizationReacts with three equivalents of an organolithium reagent to give derivatized dimethylsilanolsFórmula:C6H18O3Si3Pureza:98%Forma y color:SolidPeso molecular:222.46Ref: 3H-SIH6105.1
Producto descatalogadoN-(2-AMINOETHYL)-3-AMINOPROPYLTRIMETHOXYSILANE-PROPYLTRIMETHOXYSILANE, oligomeric co-hydrolysate
Diamine Functional Polymeric Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
N-(2-Aminoethyl)-3-aminopropyltrimethoxsilane-propyltrimethoxysilane,N-[3-(trimethoxysilyl)propyl]ethylenediamine-(trimethoxysilyl)propane, oligomeric co-hydrolysate
Cohydrolysate of SIA0591.1 and SIP6918.0Forma y color:Straw LiquidPeso molecular:222.36N-(6-AMINOHEXYL)AMINOMETHYLTRIETHOXYSILANE, 92%
CAS:Diamino Functional Trialkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
N-(6-Aminohexyl)aminomethyltriethoxysilane; N-[6-Triethoxysilyl)methyl]hexamethylethylenediamine
Primary amine and an internal secondary amine coupling agent for UV cure and epoxy systemsUsed in microparticle surface modificationFórmula:C13H32N2O3SiPureza:92%Forma y color:Straw LiquidPeso molecular:292.49PHENETHYLTRIMETHOXYSILANE, tech
CAS:Aromatic Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Phenethyltrimethoxysilane; Phenylethyltrimethoxysilane; Trimethoxy(2-phenylethyl)silane
Contains α-, β-isomersComponent in optical coating resinsIn combination with TEOS,SIT7110.0, forms hybrid silicalite-1 molecular sievesFórmula:C11H18O3SiPureza:97%Forma y color:Straw To Dark Amber LiquidPeso molecular:226.35Ref: 3H-SIP6722.6
Producto descatalogado(N,N-DIMETHYLAMINO)TRIETHYLSILANE
CAS:Trialkylsilyl Blocking Agent
Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.
N,N-Dimethylaminotriethylsilane; Triethylsilyldimethylamine
Very reactive triethylsilyl protecting groupDimethylamine by-product producedUsed primarily for the protection of alcoholsCan be used to protect amines and carboxylic acidsSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochureFórmula:C8H21NSiPureza:97%Forma y color:Straw LiquidPeso molecular:159.35PHENYLMETHYLDICHLOROSILANE
CAS:Aromatic Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Arylsilane Cross-Coupling Agent
The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.
Phenylmethyldichlorosilane; Methylphenyldichlorosilane; Dichloromethylphenylsilane
Viscosity, 20 °C: 1.2 cStΔHvap: 48.1 kJ/molVapor pressure, 82.5 °C: 13 mmMonomer for high temperature siliconesReacts well under the influence of NaOH versus fluoride activation w/ aryl chlorides, bromides, and iodidesFórmula:C7H8Cl2SiPureza:97%Forma y color:LiquidPeso molecular:191.13Ref: 3H-SIP6738.0
Producto descatalogado
