
Silanos
Subcategorías de "Silanos"
Se han encontrado 1234 productos de "Silanos"
THEXYLDIMETHYLCHLOROSILANE
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Trialkylsilyl Blocking Agent
Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.
Thexyldimethylchlorosilane; t-Hexyldimethylchlorosilane; Dimethylthexylchlorosilane; TDS-Cl
Ethers show stability similar to or greater than the TBS ethers.Used for 1° and 2° aminesSelective for 1° alcoholsHighly stable protection of alcohols, amines, amides, mercaptans and acidsThe N-silylated β-lactam shows increased hydrolytic stability over that of the analogous N-TBS derivativeSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochureFórmula:C8H19ClSiPureza:97%Forma y color:LiquidPeso molecular:178.781,1,3,3,5,5-HEXAMETHYLTRISILOXANE
CAS:Siloxane-Based Silane Reducing Agent
Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.
1,1,3,3,5,5-hexamethyltrisiloxane; Methyl 1,5-dihydro-1,1,3,3-hexamethyltrsiloxane; M’DM’
High molecular weight silane reducing agentUndergoes hydrosilylation reactionsExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Fórmula:C6H20O2Si3Pureza:97%Forma y color:LiquidPeso molecular:208.48BIS[3-(TRIETHOXYSILYL)PROPYL]DISULFIDE, 90%
CAS:Bis[3-(triethoxysilyl)propyl]disulfide; bis(triethoxysilyl)-4,5-dithiooctane
Sulfur functional dipodal silaneContains sulfide and tetrasulfideDipodal coupling agent/vulcanizing agent for rubbersIntermediate for mesoporous silicas with acidic poresFórmula:C18H42O6S2Si2Pureza:90%Forma y color:Pale Yellow Amber LiquidPeso molecular:474.821,2-BIS(TRIETHOXYSILYL)ETHANE
CAS:Alkyl Silane - Dipodal Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Non Functional Alkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
Dipodal Silane
Dipodal silanes are a series of adhesion promoters that have intrinsic hydrolytic stabilities up to ~10,000 times greater than conventional silanes and are used in applications such as plastic optics, multilayer printed circuit boards and as adhesive primers for ferrous and nonferrous metals. They have the ability to form up to six bonds to a substrate compared to conventional silanes with the ability to form only three bonds to a substrate. Many conventional coupling agents are frequently used in combination with 10-40% of a non-functional dipodal silane, where the conventional coupling agent provides the appropriate functionality for the application, and the non-functional dipodal silane provides increased durability. Also known as bis-silanes additives enhance hydrolytic stability, which impacts on increased product shelf life, ensures better substrate bonding and also leads to improved mechanical properties in coatings as well as composite applications.
1,2-Bis(triethoxysilyl)ethane (Hexaethoxydisilethylene, BSE)
ΔHvap: 101.5 kJ/molVapor pressure, 150°: 10mmAdditive to silane coupling agent formulations that enhance hydrolytic stabilityEmployed in corrosion resistant coating and primers for steel and aluminumComponent in evaporation-induced self-assembly of mesoporous structuresForms mesoporous molecular sieves that can be further functionalizedSolg-gels of α,ω-bis(trimethoxysilyl)alkanes reportedHydrolysis kinetics studied7Advanced silane in SIVATE™ E610Used as an adhesion promoter in Bird-deterrent Glass CoatingsFórmula:C14H34O6Si2Pureza:97%Forma y color:LiquidPeso molecular:354.59PENTAFLUOROPHENYLTRIETHOXYSILANE
CAS:Arylsilane Cross-Coupling Agent
The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.
Pentafluorophenyltriethoxysilane; Triethoxysilylperfluorobenzene
Forms hydrogen-free silicone resins useful in optical coatingsUseful for the preparation of pentafluorophenyl derivativesExtensive review of silicon based cross-coupling agents: Denmark, S. E. et al. "Organic Reactions, Volume 75" Denmark, S. E. ed., John Wiley and Sons, 233, 2011Fórmula:C12H15F5O3SiPureza:97%Forma y color:Straw LiquidPeso molecular:330.33DIMETHYLSILA-14-CROWN-5, 95%
CAS:Silacrown (250.37 g/mol)
2,2-Dimethyl-1,3,6,9,12-pentaoxa-2-silacyclotetradecaneCrown ether analogDual end protected PEGPotential Li ion electrolyteFórmula:C10H22O5SiPureza:95%Forma y color:LiquidPeso molecular:250.37DIALLYLDIMETHYLSILANE, 92%
CAS:Fórmula:C8H16SiPureza:92%Forma y color:Straw LiquidPeso molecular:140.3n-BUTYLDIMETHYLCHLOROSILANE
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
n-Butyldimethylchlorosilane; Butylchlorodimethylsilane; Butyldimethylsilyl chloride; Chlorodimethyl-n-butylsilane
Forms bonded phases for HPLCFórmula:C6H15ClSiPureza:97%Forma y color:LiquidPeso molecular:150.721,2-BIS(TRIMETHOXYSILYL)DECANE
CAS:Alkyl Silane - Dipodal Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Non Functional Alkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
Dipodal Silane
Dipodal silanes are a series of adhesion promoters that have intrinsic hydrolytic stabilities up to ~10,000 times greater than conventional silanes and are used in applications such as plastic optics, multilayer printed circuit boards and as adhesive primers for ferrous and nonferrous metals. They have the ability to form up to six bonds to a substrate compared to conventional silanes with the ability to form only three bonds to a substrate. Many conventional coupling agents are frequently used in combination with 10-40% of a non-functional dipodal silane, where the conventional coupling agent provides the appropriate functionality for the application, and the non-functional dipodal silane provides increased durability. Also known as bis-silanes additives enhance hydrolytic stability, which impacts on increased product shelf life, ensures better substrate bonding and also leads to improved mechanical properties in coatings as well as composite applications.
1,2-Bis(trimethoxysilyl)decane; 3,3,6,6-Tetramethoxy-4-octyl-2,7-dioxa-3,6-disilaoctane
Pendant dipodal silaneEmployed in high pH HPLCEmployed in the fabrication of luminescent molecular thermometersFórmula:C16H38O6Si2Pureza:97%Forma y color:LiquidPeso molecular:382.65(3-ACRYLOXYPROPYL)METHYLDIMETHOXYSILANE, tech
CAS:Acrylate Functional Dialkoxysilane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
3-(acryloxypropyl)methyldimethoxysilane, dimethoxymethylsilylpropyl acrylate
Employed in fabrication of photoimageable, low shrinkage multimode waveguidesCoupling agent for UV cure systemsUsed in microparticle surface modificationComonomer for free-radical polymerizaitonInhibited with MEHQFórmula:C9H18O4SiPureza:techForma y color:Straw LiquidPeso molecular:218.331,3-BIS(4-BIPHENYL)-1,1,3,3-TETRAMETHYLDISILAZANE, 95%
CAS:Phenyl-Containing Blocking Agent
Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.
1,3-Bis(4-biphenyl)-1,1,3,3-tetramethyldisilazane
Reactivity and stability similar to that of SID4586.0Summary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochureFórmula:C28H31NSi2Pureza:95%Forma y color:White SolidPeso molecular:437.731,1,3,3-TETRAMETHYLDISILOXANE, 99%
CAS:Fórmula:C4H14OSi2Pureza:99%Forma y color:LiquidPeso molecular:134.33((CHLOROMETHYL)PHENYLETHYL)TRIMETHOXYSILANE
CAS:Halogen Functional Trialkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
((Chloromethyl)phenylethyl)trimethoxysilane; [2-[3(or 4)-(Chloromethyl)phenyl]ethyl]trimethoxysilane; (Trimethoxysilylethyl)benzyl chloride
Mixed m-, p- isomersUsed in microparticle surface modificationAdhesion promoter for polyphenylenesulfide and polyimide coatingsEmployed as a high temperature coupling agentDetermined by TGA a 25% weight loss of dried hydrolysates at 495 °CReagent for surface initiated atom-transfer radical-polymerization (ATRP) of N-isopropylacrylamide-butylmethacrylate copolymersFórmula:C12H19ClO3SiPureza:97%Forma y color:Straw LiquidPeso molecular:274.82(30-35% TRIETHOXYSILYLETHYL)ETHYLENE-(35-40% 1,4-BUTADIENE)-(25-30% STYRENE) terpolymer, 50% in toluene
(30-35% Triethoxysilylethyl)ethylene-(35-40% 1,4-butadiene)-(25-30% styrene) terpolymer; (vinyltriethoxysilane)-(1,2-butadiene)-(styrene) terpolymer
Multi-functional polymeric trialkoxy silaneHydrophobic modified polybutadiene50% in tolueneViscosity: 20-30 cStForma y color:Pale Yellow Amber LiquidPeso molecular:4500-55001,1,1,3,3,3-HEXAMETHYLDISILAZANE, 99% 5-GAL DRUM
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Silane Cross-Coupling Agent
The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.
Trimethylsilyl Blocking Agent
Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.
ALD Material
Atomic layer deposition (ALD) is a chemically self-limiting deposition technique that is based on the sequential use of a gaseous chemical process. A thin film (as fine as -0.1 Å per cycle) results from repeating the deposition sequence as many times as needed to reach a certain thickness. The major characteristic of the films is the resulting conformality and the controlled deposition manner. Precursor selection is key in ALD processes, namely finding molecules which will have enough reactivity to produce the desired films yet are stable enough to be handled and safely delivered to the reaction chamber.
1,1,1,3,3,3-Hexamethyldisilazane; HMDS; HMDZ; Bis(trimethylsilyl)amine
<5 ppm chlorideStandard grade available, SIH6110.0Viscosity: 0.90 cStΔHcomb: 25,332 kJ/molΔHvap: 34.7 kJ/molDipole moment: 0.37 debyeSurface tension: 18.2 mN/mSpecific wetting surface: 485 m2/gVapor pressure, 50 °: 50 mmpKa: 7.55Photoresist adhesion promoterDielectric constant: 1000 Hz: 2.27Ea, reaction w/SiO2 surface: 73.7 kJ/molVersatile silylation reagentCreates hydrophobic surfacesConverts acid chlorides and alcohols to amines in a three-component reactionReacts with formamide and ketones to form pyrimidinesLithium reagent reacts w/ aryl chlorides or bromides to provide primary anilinesUsed to convert ketones to α-aminophosphonatesFórmula:C6H19NSi2Pureza:99%Forma y color:Colourless LiquidPeso molecular:161.39Ref: 3H-SIH6110.1
drA consultar25gA consultarcylA consultar14kgA consultar1.5kgA consultar150kgA consultarHEXADECYLTRIETHOXYSILANE, 92%
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Hexadecyltriethoxysilane; Triethoxysilylhexadecane; Cetyltriethoxysilane
Trialkoxy silaneFórmula:C22H48O3SiPureza:92%Forma y color:Straw LiquidPeso molecular:388.71n-OCTADECYLTRICHLOROSILANE, 97%
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
n-Octadecyltrichlorosilane; OTS; Trichlorosilyloctadecane; Trichlorooctadecylsilane
Contains <5% C18 isomersProvides lipophilic surface coatingsEmployed in patterning and printing of electroactive molecular filmsImmobilizes physiologically active cell organellesTreated substrates increase electron transport of pentacene filmsHighest concentration of terminal silane substitutionFórmula:C18H37Cl3SiPureza:97% including isomersForma y color:Straw LiquidPeso molecular:387.93n-OCTYLTRICHLOROSILANE
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
n-Octyltrichlorosilane; Trichlorosilyloctane; Trichlorooctylsilane
Vapor pressure, 125 °C: 1 mmSiO2 surface modification improves pentacene organic electronic performanceFórmula:C8H17Cl3SiPureza:97%Forma y color:Straw LiquidPeso molecular:247.67TRIETHOXYSILYLBUTYRALDEHYDE, tech
CAS:Aldehyde Functional Trialkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
Triethoxysilylbutyraldehyde; Triethoxysilylbutanal
Coupling agent for chitosan to titaniumContains 3-triethoxysilyl-2-methylpropanal isomer and cyclic siloxy acetal, 2,2,6-triethoxy-1-oxa-2-silacyclohexaneFórmula:C10H22O4SiPureza:85%Forma y color:Straw LiquidPeso molecular:234.37
