CymitQuimica logo
Silanes

Silanes

Les silanes sont des composés à base de silicium avec un ou plusieurs groupes organiques attachés à un atome de silicium. Ils servent de building blocks cruciaux dans la synthèse organique et inorganique, notamment dans la modification de surface, la promotion de l'adhésion et la production de revêtements et de mastics. Les silanes sont largement utilisés dans l'industrie des semi-conducteurs, le traitement du verre et comme agents de réticulation en chimie des polymères. Chez CymitQuimica, nous proposons une gamme variée de silanes conçus pour vos applications de recherche et industrielles.

Sous-catégories appartenant à la catégorie "Silanes"

1235 produits trouvés pour "Silanes"

Trier par

Degré de pureté (%)
0
100
|
0
|
50
|
90
|
95
|
100
produits par page.
  • 1,3,5-TRIISOPROPYLCYCLOTRISILAZANE

    CAS :
    Formule :C9H27N3Si3
    Degré de pureté :95%
    Couleur et forme :Liquid
    Masse moléculaire :261.59

    Ref: 3H-SIT8384.2

    cspk
    À demander
  • HEXYLTRIMETHOXYSILANE

    CAS :
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Hexyltrimethoxysilane; Trimethoxyhexylsilane; Trimethoxysilylhexane<br>Surface modification of TiO2 pigments improves dispersionTrialkoxy silane<br></p>
    Formule :C9H22O3Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :206.35

    Ref: 3H-SIH6168.5

    2kg
    À demander
    50g
    À demander
    16kg
    À demander
  • PHENYLDIMETHYLCHLOROSILANE

    CAS :
    <p>Phenyl-Containing Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>Aromatic Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Phenyldimethylchlorosilane; Chlorodimethylphenylsilane; Dimethylphenylchlorosilane<br>Viscosity: 1.4 cStΔHvap: 47.7 kJ/molVapor pressure, 25 °: 1 mmForms cuprateUsed in analytical proceduresSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formule :C8H11ClSi
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :170.71

    Ref: 3H-SIP6728.0

    2kg
    À demander
    16kg
    À demander
    750g
    À demander
    180kg
    À demander
  • O-(METHACRYLOXYETHYL)-N-(TRIETHOXYSILYLPROPYL)CARBAMATE, 90%

    CAS :
    <p>Methacrylate Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>O-(Methacryloxyethyl)-N-(triethoxysilylpropyl)carbamate<br>Coupling agent for UV cure systemsHydrophilic monomerUsed in microparticle surface modificationInhibited with MEHQ<br></p>
    Formule :C16H31NO7Si
    Degré de pureté :90%
    Couleur et forme :Straw Liquid
    Masse moléculaire :377.51

    Ref: 3H-SIM6480.8

    100g
    À demander
  • 3-CYANOPROPYLTRIETHOXYSILANE

    CAS :
    Formule :C10H21NO3Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :231.37

    Ref: 3H-SIC2455.0

    25g
    À demander
    2kg
    À demander
    100g
    À demander
  • (3- GLYCIDOXYPROPYL)TRIMETHOXYSILANE

    CAS :
    <p>(3- Glycidoxypropyl)trimethoxysilane; 3-(2,3-epoxypropoxy)propyltrimethoxysilane; trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane; 3-(trimethoxysilyl)propyl glycidyl ether; GLYMO<br>Epoxy functional trialkoxy silaneViscosity: 3.2 cStγc of treated surfaces: 38.55 mN/mSpecific wetting surface area: 331 m2/gComponent in aluminum metal bonding adhesivesCoupling agent for epoxy composites employed in electronic "chip" encapsulationComponent in abrasion resistant coatings for plastic opticsUsed to prepare epoxy-containing hybrid organic-inorganic materialsUsed in microparticle surface modificationEpoxy silane treated surfaces convert to hydrophilic-diols when exposed to moisture<br></p>
    Formule :C9H20O5Si
    Degré de pureté :98%
    Couleur et forme :Straw Liquid
    Masse moléculaire :236.34

    Ref: 3H-SIG5840.0

    2kg
    À demander
    100g
    À demander
    18kg
    À demander
    180kg
    À demander
  • 11-AZIDOUNDECYLTRIMETHOXYSILANE, 95%

    CAS :
    <p>Azide Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>11-Azidoundecyltrimethoxysilane, 11-(trimethoxysilyl)undecyl azide<br>Coupling agent for surface modificationUsed in "click" chemistryAVOID CONTACT WITH METALS<br></p>
    Formule :C14H31N3O3Si
    Degré de pureté :95%
    Couleur et forme :Straw To Amber Liquid
    Masse moléculaire :317.5

    Ref: 3H-SIA0795.0

    2.5g
    À demander
  • 6-PHENYLHEXYLDIMETHYL(DIMETHYLAMINO)SILANE

    CAS :
    Formule :C16H29NSi
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :263.49

    Ref: 3H-SIP6736.32

    100g
    À demander
  • (N,N-DIMETHYLAMINO)TRIMETHYLSILANE

    CAS :
    <p>Trimethylsilyl Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Dimethylaminotrimethylsilane; Pentamethylsilanamine; Trimethylsilyldimethylamine; TMSDMA<br>ΔHvap: 31.8 kJ/molSelectively silylates equatorial hydroxyl groups in prostaglandin synthesisStronger silylation reagent than HMDS; silylates amino acidsDialkylaminotrimethylsilanes are used in the synthesis of pentamethinium saltsWith aryl aldehydes converts ketones to α,β-unsaturated ketonesSimilar to SID6110.0 and SID3398.0Liberates Me2NH upon reactionSilylates urea-formaldehyde polycondensatesSilylates phosphorous acidsNafion SAC-13 has been shown to be a recyclable catalyst for the trimethylsilylation of primary, secondary, and tertiary alcohols in excellent yields and short reaction timesSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formule :C5H15NSi
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :117.27

    Ref: 3H-SID3605.0

    25g
    À demander
    2kg
    À demander
    100g
    À demander
    13kg
    À demander
  • N-METHYLAMINOPROPYLTRIMETHOXYSILANE

    CAS :
    <p>N-Methylaminopropyltrimethoxysilane, 3-(trimethoxysilyl)-n-methyl-1-propanamine<br>Secondary amino functional trialkoxy silaneγc of treated surfaces: 31 mN/mpKb 25H2O: 5.18Used in microparticle surface modificationCoupling agent for UV cure and epoxy systemsOrients liquid crystalsReacts with urethane prepolymers to form moisture-curable resins<br></p>
    Formule :C7H19NO3Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :193.32

    Ref: 3H-SIM6500.0

    25g
    À demander
    2kg
    À demander
    15kg
    À demander
    180kg
    À demander
  • 2-CHLOROETHYLTRICHLOROSILANE, 95%

    CAS :
    Formule :C2H4Cl4Si
    Degré de pureté :95%
    Couleur et forme :Straw Liquid
    Masse moléculaire :197.95

    Ref: 3H-SIC2270.0

    1kg
    À demander
    25g
    À demander
  • (3-GLYCIDOXYPROPYL)TRIETHOXYSILANE

    CAS :
    <p>(3-Glycidoxypropyl)triethoxysilane; triethoxy[3-(oxiranylmethoxy)propyl]-silane; 2-[[3- (triethoxysilyl)propoxy]methyl]-oxirane; triethoxy[3- (oxiranylmethoxy)propyl]silane; 3-(2,3- epoxypropoxypropyl)triethoxysilane<br>Epoxy functional trialkoxy silaneViscosity: 3 cSt Coupling agent for latex polymersUsed in microparticle surface modificationPrimer for aluminum and glass to epoxy coatings and adhesives when applied as a 1-2% solution in solventCoupling agent for UV cure and epoxy systemsEpoxy silane treated surfaces convert to hydrophilic-diols when exposed to moisture<br></p>
    Formule :C12H26O5Si
    Couleur et forme :Straw Liquid
    Masse moléculaire :278.42

    Ref: 3H-SIG5839.0

    2kg
    À demander
    100g
    À demander
    18kg
    À demander
    180kg
    À demander
  • 1,3-DIVINYL-1,1,3,3-TETRAMETHYLDISILAZANE

    CAS :
    <p>Diolefin Functional Amino Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>DVTMDZ; Bis(vinyldimethylsilyl)amine; N-(Dimethylvinylsilyl)-1,1-dimethyl-1-vinylsilylamine; 1,1,3,3-Tetramethyl-1,3-divinyldisilazane<br>Adhesion promoter for negative photoresistsFor silylation of glass capillary columnsCopolymerizes with ethylene<br></p>
    Formule :C8H19NSi2
    Degré de pureté :97%
    Couleur et forme :Liquid
    Masse moléculaire :185.42

    Ref: 3H-SID4612.0

    2kg
    À demander
    14kg
    À demander
    250g
    À demander
    170kg
    À demander
  • VINYLDIMETHYLCHLOROSILANE

    CAS :
    Formule :C4H9ClSi
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :120.65

    Ref: 3H-SIV9070.0

    16kg
    À demander
    250g
    À demander
    750g
    À demander
    150kg
    À demander
  • 2-HYDROXY-4-(3-TRIETHOXYSILYLPROPOXY)DIPHENYLKETONE, tech

    CAS :
    <p>2-Hydroxy-4-(3-triethoxysilylpropoxy)diphenylketone; 4-(3-triethoxysilylpropoxy)-2-hydroxybenzophenone [2-hydroxy-4-[3-(triethoxysilyl)propoxy]phenyl]phenylmethanone<br>UV active trialkoxy silaneAmber liquidViscosity, 25 °C: 125-150 cStUV max: 230, 248, 296 (s), 336Strong UV blocking agent for optically clear coatings,Absorbs from 210-420 nmUsed in Bird-deterrent Glass Coatings<br></p>
    Formule :C22H30O6Si
    Degré de pureté :95%
    Couleur et forme :Straw To Amber Liquid
    Masse moléculaire :418.56

    Ref: 3H-SIH6200.0

    2kg
    À demander
    100g
    À demander
    18kg
    À demander
  • N-PHENYLAMINOPROPYLTRIMETHOXYSILANE

    CAS :
    <p>N-Phenylaminopropyltrimethoxysilane; N-[3-(trimethoxysilyl)propyl]aniline; [3-(trimethoxysilyl)propyl]aniline<br>Secondary amino functional trialkoxy silaneSpecific wetting surface: 307 m2/gCoupling agent for UV cure and epoxy systemsOxidatively stable coupling agent for polyimides, phenolics, epoxiesUsed in microparticle surface modification<br></p>
    Formule :C12H21NO3Si
    Degré de pureté :92%
    Couleur et forme :Straw Amber Liquid
    Masse moléculaire :255.38

    Ref: 3H-SIP6724.0

    25g
    À demander
    2kg
    À demander
    18kg
    À demander
  • TRIETHOXYSILANE

    CAS :
    <p>Tri-substituted Silane Reducing Agent<br>Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.<br>Triethoxysilane; Silicon triethoxide; Triethoxysilylhydride<br>CAUTION: VAPORS CAUSE BLINDNESS — GOGGLES MUST BE WORNDISPROPORTIONATES IN PRESENCE OF BASE TO PYROPHORIC PRODUCTSContains trace Si–Cl for stabilityΔHcomb: -4,604 kJ/molΔHform: 925 kJ/molΔHvap: 175.4 kJ/molSurface tension: 22.3 mN/mVapor pressure, 20 °C: 20.2 mmCritical temperature: 244 °CDipole moment: 1.78 debyeHydrosilylates olefins in presence of PtUsed to convert alkynes to (E)–alkenes via hydrosilylation-desilylationReduces amides to amines in the presence of Zn(OAc)2Used in the reduction of phosphine oxides to phosphinesReduces esters in the presence of zinc hydride catalystReduces aldehydes and ketones to alcohols via the silyl ethers in presence of fluoride ionGives 1,2 reduction of enones to allyl alcoholsExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007<br></p>
    Formule :C6H16O3Si
    Degré de pureté :97%
    Couleur et forme :Liquid
    Masse moléculaire :164.28

    Ref: 3H-SIT8185.0

    2kg
    À demander
    100g
    À demander
    15kg
    À demander
  • 3-[METHOXY(POLYETHYLENEOXY)9-12]PROPYLTRIMETHOXYSILANE, tech

    CAS :
    <p>Tipped PEG Silane (591-723 g/mol)<br>PEO, Trimethoxysilane termination utilized for hydrophilic surface modificationPEGylation reagentHydrogen bonding hydrophilic silane<br></p>
    Formule :CH3(C2H4O)9-12(CH2)3OSi(OCH3)3
    Couleur et forme :Straw Liquid
    Masse moléculaire :591-723

    Ref: 3H-SIM6492.72

    25g
    À demander
    2kg
    À demander
    100g
    À demander
  • TRIMETHYLSILYL TRIFLUOROMETHANESULFONATE

    CAS :
    <p>Trimethylsilyl Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>Trimethylsilyltrifluoromethanesulfonate; Trimethylsilyltriflate; TMSOTf<br>Strong silylating agent for C- or O-silylationsReacts with nitroalkanes to give N,N-bis(trimethylsiloxy)enaminesNafion SAC-13 has been shown to be a recyclable catalyst for the trimethylsilylation of primary, secondary, and tertiary alcohols in excellent yields and short reaction timesSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formule :C4H9F3O3SSi
    Couleur et forme :Straw Liquid
    Masse moléculaire :222.25

    Ref: 3H-SIT8620.0

    20kg
    À demander
    2.5kg
    À demander
    225kg
    À demander
  • t-BUTYLDIMETHYLCHLOROSILANE

    CAS :
    <p>Trialkylsilyl Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>tert-Butyldimethylchlorosilane; TBS-Cl; Chlorodimethyl-t-butylsilane; tert-Butylchlorodimethylsilane; Chloro(1,1-dimethylethyl)dimethylsilane<br>Excellent for 1° and 2° alcoholsSilylation catalyzed by imidazoleBlocking agent widely used in prostaglandin synthesisStable to many reagentsCan be selectively cleaved in presence of acetate, THP and benzyl ethers among othersUsed for the protection of alcohols, amines, thiols, lactams, and carboxylic acidsClean NMR characteristics of protecting groupSilylation reagent - derivatives resistant to Grignards, alkyl lithium compounds, etcFacile removal with flouride ion sourcesSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formule :C6H15ClSi
    Degré de pureté :97%
    Couleur et forme :Translucent Solid
    Masse moléculaire :150.72

    Ref: 3H-SIB1935.0

    2kg
    À demander
    100g
    À demander
    10kg
    À demander
    100kg
    À demander
  • DIMETHYLSILA-11-CROWN-4, 95%

    CAS :
    <p>Silacrown (206.31 g/mol)<br>1,1-Dimethyl-1,3,6,9,11-tetraoxa-1-silacycloundecaneCrown ether analogDual end protected PEG<br></p>
    Formule :C8H18O4Si
    Degré de pureté :95%
    Couleur et forme :Liquid
    Masse moléculaire :206.31

    Ref: 3H-SID4220.4

    25g
    À demander
  • 3-[METHOXY(POLYETHYLENEOXY)6-9]PROPYLTRICHLOROSILANE, tech

    CAS :
    <p>Tipped PEG Silane (472-604 g/mol)<br>90% oligomersPEO, Trichlorosilane termination utilized for hydrophilic surface modificationPEGylation reagentHydrogen bonding hydrophilic silaneProvides protein antifouling surface<br></p>
    Formule :CH3O(C2H4O)6-9(CH2)3Cl3Si
    Couleur et forme :Straw Liquid
    Masse moléculaire :472-604

    Ref: 3H-SIM6492.66

    10g
    À demander
  • n-OCTYLSILANE

    CAS :
    <p>Mono-substituted Silane Reducing Agent<br>Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.<br>Trihydridosilane<br>Silyl Hydrides are a distinct class of silanes that behave and react very differently than conventional silane coupling agents. They react with the liberation of byproduct hydrogen. Silyl hydrides can react with hydroxylic surfaces under both non-catalyzed and catalyzed conditions by a dehydrogenative coupling mechanism. Trihydridosilanes react with a variety of pure metal surfaces including gold, titanium, zirconium and amorphous silicon, by a dissociative adsorption mechanism. The reactions generally take place at room temperature and can be conducted in the vapor phase or with the pure silane or solutions of the silane in aprotic solvents. Deposition should not be conducted in water, alcohol or protic solvents.<br>n-Octylsilane; 1-Sila-nonane<br>Fugitive inhibitor of hydrosilylationForms SAMs on titanium, gold and silicon surfacesExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007<br></p>
    Formule :C8H20Si
    Degré de pureté :97%
    Couleur et forme :Liquid
    Masse moléculaire :144.33

    Ref: 3H-SIO6712.5

    50g
    À demander
  • DI-n-BUTYLDIMETHOXYSILANE

    CAS :
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Di-n-butyldimethoxysilane; Dimethoxydi-n-butylsilane<br>Dialkoxy silane<br></p>
    Formule :C10H24O2Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :204.39

    Ref: 3H-SID3214.0

    2kg
    À demander
  • 4-PHENYLBUTYLTRIMETHOXYSILANE

    CAS :
    Formule :C13H22O3Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :254.4

    Ref: 3H-SIP6724.92

    750g
    À demander
  • DECAMETHYLCYCLOPENTASILOXANE

    CAS :
    Formule :C10H30O5Si5
    Degré de pureté :97%
    Couleur et forme :Liquid
    Masse moléculaire :370.77

    Ref: 3H-SID2650.0

    100g
    À demander
    17kg
    À demander
    190kg
    À demander
  • 1-[3-(2-AMINOETHYL)-3-AMINOISOBUTYL]-1,1,3,3,3-PENTAETHOXY-1,3-DISILAPROPANE, 95%

    CAS :
    <p>1-[3-(2-Aminoethyl)-3-aminoisobutyl]-1,1,3,3,3-pentaethoxy-1,3-disilapropane; 3-[2-(aminoethylamino-5-methyl)]-1,1,1,3,3-pentaethoxydisilahexane<br>Diamine functional pendant dipodal silaneAdhesion promoter for metal substratesPrimary amine coupling agent for UV cure and epoxy systems<br></p>
    Formule :C17H42N2O5Si2
    Degré de pureté :95%
    Masse moléculaire :410.7

    Ref: 3H-SIA0587.6

    10g
    À demander
  • DIPHENYLDIETHOXYSILANE

    CAS :
    <p>Arylsilane Cross-Coupling Agent<br>The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.<br>Aromatic Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Diphenyldiethoxysilane; Diethoxydiphenylsilane; 1,1'-(Diethoxysilylene)bis-benzene<br>Vapor pressure, 125 °: 2 mmAlternative to phenyltriethoxysilane for the cross-coupling of a phenyl groupProvides hydrophobic coatings with good thermal and UV resistanceDialkoxy silane<br></p>
    Formule :C16H20O2Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :272.42

    Ref: 3H-SID4525.0

    2kg
    À demander
    18kg
    À demander
    200kg
    À demander
  • n-BUTYLDIMETHYL(DIMETHYLAMINO)SILANE

    CAS :
    <p>Trialkylsilyl Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Butyldimethyl(dimethylamino)silane; Trimethylsilyldimethylamine<br>Reactive aminofunctional organosilaneHighly reactive reagent for bonded phases without acidic byproductSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formule :C8H21NSi
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :159.35

    Ref: 3H-SIB1937.0

    2kg
    À demander
    50g
    À demander
  • n-PROPYLMETHYLDICHLOROSILANE

    CAS :
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Propylmethyldichlorosilane; Dichloromethyl-n-propylsilane<br>Viscosity, 20 °C: 0.8 cSt<br></p>
    Formule :C4H10Cl2Si
    Degré de pureté :97%
    Couleur et forme :Liquid
    Masse moléculaire :157.11

    Ref: 3H-SIP6912.0

    100g
    À demander
  • 3-METHOXYPROPYLTRIMETHOXYSILANE

    CAS :
    Formule :C7H18O4Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :194.3

    Ref: 3H-SIM6493.0

    100g
    À demander
  • 2-CYANOETHYLTRIETHOXYSILANE

    CAS :
    Formule :C9H19NO3Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :217.34

    Ref: 3H-SIC2445.0

    17kg
    À demander
    180kg
    À demander
  • TRIMETHYLMETHOXYSILANE

    CAS :
    Formule :C4H12OSi
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :104.22

    Ref: 3H-SIT8566.0

    14kg
    À demander
    1.5kg
    À demander
    145kg
    À demander
  • TRIS(DIMETHYLAMINO)SILANE

    CAS :
    <p>ALD Material<br>Atomic layer deposition (ALD) is a chemically self-limiting deposition technique that is based on the sequential use of a gaseous chemical process. A thin film (as fine as -0.1 Å per cycle) results from repeating the deposition sequence as many times as needed to reach a certain thickness. The major characteristic of the films is the resulting conformality and the controlled deposition manner. Precursor selection is key in ALD processes, namely finding molecules which will have enough reactivity to produce the desired films yet are stable enough to be handled and safely delivered to the reaction chamber.<br>Tris(dimethylamino)silane; Tris(dimethylamido)silylhydride; N,N,N',N',N'',N''-Hexamethylsilanetriamine<br>AIR TRANSPORT FORBIDDENVapor pressure, 4 °C: 1 6 mmHydrosilylates olefins in presence of Rh2Cl2(CO)4Reacts with ammonia to form silicon nitride prepolymersEmployed in low pressure CVD of silicon nitride<br></p>
    Formule :C6H19N3Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :161.32

    Ref: 3H-SIT8714.0

    50g
    À demander
  • 3-AMINOPROPYLTRIMETHOXYSILANE

    CAS :
    <p>Monoamine Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>3-Aminopropyltrimethoxysilane, Trimethoxysilylpropylamine, ?-Aminopropyltrimethoxysilane, APTES, AMEO, GAPS, A-1100<br>Higher purity material available as SIA0611.1Vapor pressure, 67 °: 5 mmSuperior reactivity in vapor phase and non-aqueous surface treatmentsPrimary amine coupling agent for UV cure and epoxy systemsHydrolysis rate vs SIA0610.0 : 6:1Used to immobilize Cu and Zn Schiff base precatalysts for formation of cyclic carbonatesUsed in microparticle surface modification<br></p>
    Formule :C6H17NO3Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :179.29

    Ref: 3H-SIA0611.0

    25g
    À demander
    2kg
    À demander
    180kg
    À demander
  • DIMETHYLDICHLOROSILANE, 98%

    CAS :
    <p>Bridging Silicon-Based Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Dimethyldichlorosilane; Dichlorodimethylsilane; DMS<br>AIR TRANSPORT FORBIDDENViscosity: 0.47 cStVapor pressure, 17 °C: 100 mmSpecific heat: 0.92 J/g/°ΔHcomb: -2,055 kJ/molΔHvap: 33.5 kJ/molSurface tension: 20.1 mN/mCoefficient of thermal expansion: 1.3 x 10-3Critical temperature: 247.2 °CCritical pressure: 34.4 atmFundamental monomer for siliconesEmployed in the tethering of two olefins for the cross metathesis-coupling step in the synthesis of Attenol AAids in the intramolecular Pinacol reactionReacts with alcohols, diols, and hydroxy carboxylic acidsEmployed as a protecting group/template in C-glycoside synthesisHigher purity available as SID4120.1Summary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formule :C2H6Cl2Si
    Degré de pureté :98%
    Couleur et forme :Straw Amber Liquid
    Masse moléculaire :129.06

    Ref: 3H-SID4120.0

    2kg
    À demander
  • BIS(TRIMETHYLSILYL)CARBODIIMIDE

    CAS :
    Formule :C7H18N2Si2
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :186.4

    Ref: 3H-SIB1856.0

    5g
    À demander
    25g
    À demander
    2kg
    À demander
    14kg
    À demander
  • n-OCTADECYLMETHYLBIS(DIMETHYLAMINO)SILANE


    Formule :C23H52N2Si
    Degré de pureté :92%
    Couleur et forme :Straw Liquid
    Masse moléculaire :384.76

    Ref: 3H-SIO6624.2

    10g
    À demander
  • DI-n-BUTYLDICHLOROSILANE

    CAS :
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Di-n-butyldichlorosilane; Dichlorodi-n-butylsilane<br></p>
    Formule :C8H18Cl2Si
    Degré de pureté :96%
    Couleur et forme :Straw Liquid
    Masse moléculaire :213.22

    Ref: 3H-SID3203.0

    10g
    À demander
    2kg
    À demander
    50g
    À demander
    18kg
    À demander
    750g
    À demander
  • N-(TRIMETHYLSILYL)IMIDAZOLE

    CAS :
    <p>Trimethylsilyl Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>Trimethylsilylimidazole; TMSIM; 1-(Trimethylsilyl)imidazole<br>Powerful silylating agent for alcoholsDoes not react with aliphatic aminesNafion SAC-13 has been shown to be a recyclable catalyst for the trimethylsilylation of primary, secondary, and tertiary alcohols in excellent yields and short reaction timesSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formule :C6H12N2Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :140.26

    Ref: 3H-SIT8590.0

    2kg
    À demander
    100g
    À demander
    14kg
    À demander
    750g
    À demander
    175kg
    À demander
  • VINYLTRIISOPROPENOXYSILANE, tech

    CAS :
    <p>Olefin Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Vinyltriisopropenoxysilane; Triisopropenoxyethenylsilane; Tris(isopropenyloxy)vinylsilane; Triisopropenoxysilylethylene<br>Employed as a cross-linker and in vapor phase derivatizationByproduct is acetoneNeutral crosslinker for high-speed moisture-cure (enoxy-cure) silicones<br></p>
    Formule :C11H18O3Si
    Degré de pureté :97%
    Couleur et forme :Liquid
    Masse moléculaire :226.35

    Ref: 3H-SIV9209.0

    2kg
    À demander
    15kg
    À demander
    170kg
    À demander
  • 1,3-BIS(CYANOPROPYL)TETRAMETHYLDISILOXANE, 92%

    CAS :
    Formule :C12H24N2OSi2
    Degré de pureté :92%
    Couleur et forme :Straw Liquid
    Masse moléculaire :268.51

    Ref: 3H-SIB1058.0

    10g
    À demander
  • (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)TRICHLOROSILANE

    CAS :
    Formule :C8H4Cl3F13Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :481.55

    Ref: 3H-SIT8174.0

    10g
    À demander
    3kg
    À demander
    50g
    À demander
    750g
    À demander
  • TRIS(3-TRIMETHOXYSILYLPROPYL)ISOCYANURATE, tech

    CAS :
    <p>Tris(3-trimethoxysilylpropyl)isocyanurate; 1,3,5-tris[3-(trimethoxysilyl)propyl]-1,3,5-triazine-2,4,6(1h,3h,5h)-trione<br>Masked isocyanate functional trialkoxy silaneViscosity: 150-350 cStCoupling agent for polyimides to silicon metalAdhesion promoter for hotmelt adhesivesForms periodic mesoporous silicas<br></p>
    Formule :C21H45N3O12Si3
    Degré de pureté :95% functional actives (contains analogous compounds)
    Couleur et forme :Straw Liquid
    Masse moléculaire :615.86

    Ref: 3H-SIT8717.0

    2kg
    À demander
    18kg
    À demander
    235kg
    À demander
  • 3-[HYDROXY(POLYETHYLENEOXY)PROPYL]HEPTAMETHYLTRISILOXANE, 90%

    CAS :
    <p>PEGylated Silicone, Trisiloxane (550-650 g/mol)<br>PEO, PEG, Hydroxyl terminated trisiloxane utilized for hydrophilic surface modificationPEGylation reagentViscosity: 35 cSt<br></p>
    Formule :HO(CH2CH2O)6-9(CH2)3(CH3)[OSi(CH3)3]2Si
    Degré de pureté :90%
    Couleur et forme :Liquid
    Masse moléculaire :550-650

    Ref: 3H-SIH6185.0

    100g
    À demander
    18kg
    À demander
    6,2kg
    2.869,00€
  • 1,4-BIS(HYDROXYDIMETHYLSILYL)BENZENE, tech

    CAS :
    Formule :C10H18O2Si2
    Couleur et forme :White Solid
    Masse moléculaire :226.42

    Ref: 3H-SIB1135.0

    10g
    À demander
    50g
    À demander
  • 1,8-BIS(TRIETHOXYSILYL)OCTANE

    CAS :
    <p>Alkyl Silane - Dipodal Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Non Functional Alkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Dipodal Silane<br>Dipodal silanes are a series of adhesion promoters that have intrinsic hydrolytic stabilities up to ~10,000 times greater than conventional silanes and are used in applications such as plastic optics, multilayer printed circuit boards and as adhesive primers for ferrous and nonferrous metals. They have the ability to form up to six bonds to a substrate compared to conventional silanes with the ability to form only three bonds to a substrate. Many conventional coupling agents are frequently used in combination with 10-40% of a non-functional dipodal silane, where the conventional coupling agent provides the appropriate functionality for the application, and the non-functional dipodal silane provides increased durability. Also known as bis-silanes additives enhance hydrolytic stability, which impacts on increased product shelf life, ensures better substrate bonding and also leads to improved mechanical properties in coatings as well as composite applications.<br>1,8-Bis(triethoxysilyl)octane; 4,4,13,13-Tetraethoxy-3,14-dioxa-4,13-disilahexadecane<br>Employed in sol-gel synthesis of mesoporous structuresCrosslinker for moisture-cure silicone RTVs with improved environmental resistanceSol-gels of α,ω-bis(trialkoxysilyl)alkanes reported<br></p>
    Formule :C20H46O6Si2
    Degré de pureté :97%
    Couleur et forme :Liquid
    Masse moléculaire :438.76

    Ref: 3H-SIB1824.0

    2kg
    À demander
    100g
    À demander
    17kg
    À demander
  • Ethyl [(tert-Butyldimethylsilyl)oxy]acetate

    Produit contrôlé
    CAS :
    <p>Applications Ethyl [(tert-Butyldimethylsilyl)oxy]acetate (cas# 67226-78-2) is a compound useful in organic synthesis.<br></p>
    Formule :C10H22O3Si
    Couleur et forme :Neat
    Masse moléculaire :218.37

    Ref: TR-E900620

    1g
    236,00€
    2g
    437,00€
    500mg
    188,00€
  • N-Benzyltrimethylsilylamine

    CAS :
    Formule :C10H17NSi
    Degré de pureté :>98.0%(T)
    Couleur et forme :Colorless to Almost colorless clear liquid
    Masse moléculaire :179.34

    Ref: 3B-B1728

    5g
    164,00€
  • N-Methyl-3-(triethoxysilyl)propan-1-amine

    CAS :
    Formule :C10H25NO3Si
    Degré de pureté :>97.0%(GC)(T)
    Couleur et forme :Colorless to Light yellow clear liquid
    Masse moléculaire :235.40

    Ref: 3B-T3242

    5g
    256,00€
    25g
    933,00€
  • 1,1,3,3,5,5-Hexaethoxy-1,3,5-trisilacyclohexane

    CAS :
    Formule :C15H36O6Si3
    Degré de pureté :>90.0%(GC)
    Couleur et forme :Colorless to Almost colorless clear liquid
    Masse moléculaire :396.70

    Ref: 3B-H1513

    1g
    94,00€
  • 2-Propynyl [3-(Triethoxysilyl)propyl]carbamate

    CAS :
    Formule :C13H25NO5Si
    Degré de pureté :>90.0%(GC)
    Couleur et forme :Colorless to Yellow clear liquid
    Masse moléculaire :303.43

    Ref: 3B-P2258

    1g
    132,00€
  • 2,5-Bis[(trimethylsilyl)ethynyl]thiophene

    CAS :
    Formule :C14H20SSi2
    Degré de pureté :>96.0%(GC)
    Couleur et forme :Light yellow to Yellow to Orange powder to crystal
    Masse moléculaire :276.54

    Ref: 3B-B4240

    5g
    482,00€
  • Ethylenedithiobis(trimethylsilane) [Protecting Reagent for Aldehydes and Ketones]

    CAS :
    Formule :C8H22S2Si2
    Degré de pureté :>97.0%(GC)
    Couleur et forme :Colorless to Almost colorless clear liquid
    Masse moléculaire :238.55

    Ref: 3B-E0479

    5g
    161,00€
  • tert-Butoxydiphenylchlorosilane (stabilized with CaCO3)

    CAS :
    Formule :C16H19ClOSi
    Degré de pureté :>95.0%(GC)
    Couleur et forme :Colorless to Almost colorless clear liquid
    Masse moléculaire :290.86

    Ref: 3B-B1436

    25ml
    684,00€
  • 1-Methyl-3-[3-(trimethoxysilyl)propyl]-1H-imidazol-3-ium Chloride

    CAS :
    Formule :C10H21ClN2O3Si
    Degré de pureté :>95.0%(T)(HPLC)
    Couleur et forme :Colorless to Light yellow to Light orange clear liquid
    Masse moléculaire :280.82

    Ref: 3B-M3446

    1g
    57,00€
    5g
    156,00€
  • N-Ethylaminoisobutyl terminated Polydimethylsiloxane cSt 8-12

    CAS :
    <p>DMS-A21 - Aminopropyl terminated polydimethylsiloxane cSt 100-120</p>
    Couleur et forme :Liquid, Clear
    Masse moléculaire :338.187722538

    Ref: 10-DMS-A21

    100g
    528,00€
  • 2-[Methoxy(polyethyleneoxy)6-9propyl]trimethoxysilane

    CAS :
    <p>S25235 - 2-[Methoxy(polyethyleneoxy)6-9propyl]trimethoxysilane</p>
    Formule :(C2H4O2)nC7H18O3Si
    Degré de pureté :90%
    Couleur et forme :Liquid
    Masse moléculaire :459-591

    Ref: 10-S25235

    25g
    438,00€
    100g
    895,00€
  • Silanol terminated polydimethylsiloxane cSt 5000

    CAS :
    <p>DMS-S35 - Silanol terminated polydimethylsiloxane cSt 5000</p>
    Couleur et forme :Liquid, Clear
    Masse moléculaire :0.0

    Ref: 10-DMS-S35

    3kg
    607,00€
  • Aminopropyl terminated polydimethylsiloxane cSt 4,000-6,000

    CAS :
    <p>DMS-A35 - Aminopropyl terminated polydimethylsiloxane cSt 4,000-6,000</p>
    Couleur et forme :Liquid, Clear
    Masse moléculaire :0.0

    Ref: 10-DMS-A35

    100g
    528,00€
  • Aminoproplyterminated polydimethylsiloxane cSt 20-30

    CAS :
    <p>DMS-A12 - Aminoproplyterminated polydimethylsiloxane cSt 20-30</p>
    Couleur et forme :Liquid, Clear
    Masse moléculaire :338.187722538

    Ref: 10-DMS-A12

    100g
    196,00€
  • Silanol terminated polydimethylsiloxanes cSt 50,000

    CAS :
    <p>DMS-S45 - Silanol terminated polydimethylsiloxanes cSt 50,000</p>
    Couleur et forme :Liquid, Clear
    Masse moléculaire :0.0

    Ref: 10-DMS-S45

    3kg
    565,00€
    100g
    86,00€
  • MonoCarbinol terminated functional Polydimethylsiloxane - symmetric cSt 35-40

    CAS :
    <p>MCS-C13 - MonoCarbinol terminated functional Polydimethylsiloxane - symmetric cSt 35-40</p>
    Couleur et forme :Liquid, Clear Liquid
    Masse moléculaire :0.0

    Ref: 10-MCS-C13

    100g
    580,00€
  • 3-(Triallylsilyl)propyl Acrylate (stabilized with MEHQ)

    CAS :
    Formule :C15H24O2Si
    Degré de pureté :>92.0%(GC)
    Couleur et forme :Light yellow to Brown clear liquid
    Masse moléculaire :264.44

    Ref: 3B-T3228

    Produit arrêté
  • (Trifluoromethyl)Trimethylsilane

    CAS :
    Formule :C4H9F3Si
    Degré de pureté :98%
    Couleur et forme :Liquid
    Masse moléculaire :142.1950
  • (N,N-DIMETHYLAMINO)TRIETHYLSILANE

    CAS :
    <p>Trialkylsilyl Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>N,N-Dimethylaminotriethylsilane; Triethylsilyldimethylamine<br>Very reactive triethylsilyl protecting groupDimethylamine by-product producedUsed primarily for the protection of alcoholsCan be used to protect amines and carboxylic acidsSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formule :C8H21NSi
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :159.35
  • PHENETHYLTRIMETHOXYSILANE, tech

    CAS :
    <p>Aromatic Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Phenethyltrimethoxysilane; Phenylethyltrimethoxysilane; Trimethoxy(2-phenylethyl)silane<br>Contains α-, β-isomersComponent in optical coating resinsIn combination with TEOS,SIT7110.0, forms hybrid silicalite-1 molecular sieves<br></p>
    Formule :C11H18O3Si
    Degré de pureté :97%
    Couleur et forme :Straw To Dark Amber Liquid
    Masse moléculaire :226.35
  • DI-t-BUTOXYDIACETOXYSILANE, 95%

    CAS :
    Formule :C12H24O6Si
    Degré de pureté :95%
    Couleur et forme :Liquid
    Masse moléculaire :292.4
  • PHENYLMETHYLDICHLOROSILANE

    CAS :
    <p>Aromatic Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Arylsilane Cross-Coupling Agent<br>The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.<br>Phenylmethyldichlorosilane; Methylphenyldichlorosilane; Dichloromethylphenylsilane<br>Viscosity, 20 °C: 1.2 cStΔHvap: 48.1 kJ/molVapor pressure, 82.5 °C: 13 mmMonomer for high temperature siliconesReacts well under the influence of NaOH versus fluoride activation w/ aryl chlorides, bromides, and iodides<br></p>
    Formule :C7H8Cl2Si
    Degré de pureté :97%
    Couleur et forme :Liquid
    Masse moléculaire :191.13
  • DODECAFLUORODEC-9-ENE-1-YLTRIMETHOXYSILANE

    CAS :
    <p>Olefin Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>9-Trimethoxysilyl-3,3,4,4,5,5,6,6,7,7,8,8-dodecafluorodecene; Dodecafluorodec-9-ene-1-yltrimethoxysilane<br>Forms self-assembled monolayers; reagent for immobilization of DNAUsed in microparticle surface modificationHalogenated alkyl hydrophobic linkerSimilar to discontinued product, SIH5919.0<br></p>
    Formule :C13H16F12O3Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :476.33
  • N-(2-AMINOETHYL)-3-AMINOPROPYLTRIMETHOXYSILANE-PROPYLTRIMETHOXYSILANE, oligomeric co-hydrolysate


    <p>Diamine Functional Polymeric Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>N-(2-Aminoethyl)-3-aminopropyltrimethoxsilane-propyltrimethoxysilane,N-[3-(trimethoxysilyl)propyl]ethylenediamine-(trimethoxysilyl)propane, oligomeric co-hydrolysate<br>Cohydrolysate of SIA0591.1 and SIP6918.0<br></p>
    Couleur et forme :Straw Liquid
    Masse moléculaire :222.36
  • (CYCLOHEXYLAMINOMETHYL)TRIETHOXYSILANE

    CAS :
    <p>(N-Cyclohexylaminomethyl)triethoxysilane; [(triethoxysilyl)methyl]aminocyclohexane<br>Secondary amino functional trialkoxy silaneInternal secondary amine coupling agent for UV cure and epoxy systemsUsed in microparticle surface modification<br></p>
    Formule :C13H29NO3Si
    Degré de pureté :95%
    Couleur et forme :Clear To Straw Liquid
    Masse moléculaire :275.46
  • 11-(2-METHOXYETHOXY)UNDECYLTRICHLOROSILANE

    CAS :
    <p>Tipped PEG Silane (363.83 g/mol)<br>PEO, Trichlorosilane termination utilized for hydrophilic surface modificationDual functional PEGylation reagentForms self-assembled monolayers with "hydrophilic tips"Hydrogen bonding hydrophilic silane<br>Related Products<br>SIM6493.3: 2-[METHOXY(TRIETHYLENEOXY)]- (11-TRIETHOXYSILYL)UNDECANOATE, tech-95<br></p>
    Formule :No
    Couleur et forme :Straw Liquid
    Masse moléculaire :259.10103
  • BIS(DIETHYLAMINO)SILANE

    CAS :
    Formule :C8H22N2Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :174.16
  • PHENYLMETHYLDIMETHOXYSILANE

    CAS :
    <p>Aromatic Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Phenylmethyldimethoxysilane; Methylphenyldimethoxysilane; Dimethoxymethylphenylsilane<br>Viscosity, 20 °C: 1.65 cStAdditive to coupling agent systems, increasing interface flexibility, UV stabilityDialkoxy silane<br></p>
    Formule :C9H14O2Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :182.29
  • METHOXY(TRIETHYLENEOXY)UNDECYLTRIMETHOXYSILANE

    CAS :
    <p>Tipped PEG Silane (438.68 g/mol)<br>PEG3C11 Silane3,3-Dimethoxy-2,15,18,24-pentaoxa-3-silapentacosanePEO, Trimethoxysilane termination utilized for hydrophilic surface modificationPEGylation reagentHydrogen bonding hydrophilic silane<br></p>
    Formule :C21H46O7Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :438.68
  • 3-ACRYLAMIDOPROPYLTRIS(TRIMETHYLSILOXY)SILANE, tech

    CAS :
    Formule :C15H37NO4Si4
    Degré de pureté :95%
    Couleur et forme :Solid
    Masse moléculaire :407.8
  • (3-GLYCIDOXYPROPYL)DIMETHYLETHOXYSILANE

    CAS :
    <p>(3-Glycidoxypropyl)dimethylethoxysilane; 3-(2,3-epoxypropoxypropyl)dimethylethoxysilane<br>Epoxy functional monoalkoxy silaneUsed in microparticle surface modificationCoupling agent for UV cure and epoxy systemsEpoxy silane treated surfaces convert to hydrophilic-diols when exposed to moisture<br></p>
    Formule :C10H22O3Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :218.37
  • TRIVINYLMETHYLSILANE

    CAS :
    Formule :C7H12Si
    Degré de pureté :95%
    Couleur et forme :Straw Liquid
    Masse moléculaire :124.26
  • PHENYLDIMETHYLSILANE

    CAS :
    <p>Phenyl-Containing Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>Tri-substituted Silane Reducing Agent<br>Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.<br>Phenyldimethylsilane; Dimethylphenylsilane;<br>Vapor pressure, 25 °C: 4 mmReacts with alcohols in presence of Wilkinson’s catalystUsed to prepare α-phenyldimethylsilyl esters with high enantioselectivityYields optically active reduction products with chiral Rh or Pd catalystsUndergoes 1,4-addition to pyridines forming N-silylated dihydropyridinesUsed in the fluoride ion-catalyzed reduction of aldehydes and ketones, and α-substituted alkanones to threo productsHydrosilylation of 1,4-bis(trimethylsilyl)butadiyne can go to the trisilyl allene or the trisilyl enyneErythro reduction of α-substituted alkanones to diols and aminoethanolsUsed to reduce α-amino ketones to aminoethanols with high stereoselectivityTogether with CuCl reduces aryl ketones, but not dialkyl ketonesUsed in the silylformylation of acetylenesExcellent reducing agent for the reduction of enones to saturated ketonesShows better selectivity than LAH in the reduction of oximes to alkoxyamines.Extensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Summary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formule :C8H12Si
    Degré de pureté :97%
    Couleur et forme :Liquid
    Masse moléculaire :136.27
  • n-OCTADECYLDIMETHYLCHLOROSILANE, 70% in toluene

    CAS :
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Octadecyldimethylchlorosilane; Dimethyl-n-octadecylchlorosilane; Chlorodimethyloctadecylsilane; Chlorodimethylsilyl-n-octadecane<br>Contains 5-10% C18 isomers70% in toluene<br></p>
    Formule :C20H43ClSi
    Couleur et forme :Straw Amber Liquid
    Masse moléculaire :347.1
  • 3-ISOCYANOTOPROPYLTRIMETHOXYSILANE, 92%

    CAS :
    <p>3-Isocyanotopropyltrimethoxysilane; trimethoxysilylpropylisocyanate<br>Isocyanate functional trialkoxy silaneViscosity: 1.4 cStCoupling agent for urethanes, polyols, and aminesComponent in hybrid organic/inorganic urethanes<br></p>
    Formule :C7H15NO4Si
    Degré de pureté :92%
    Couleur et forme :Straw Liquid
    Masse moléculaire :205.29
  • 1,3-DIVINYLTETRAMETHYLDISILOXANE

    CAS :
    <p>Alkenylsilane Cross-Coupling Agent<br>The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.<br>1,3-Divinyltetramethyldisiloxane; Diethenyltetramethyldisiloxane; Tetramethyldivinyldisiloxane; Divinyltetramethyldisiloxane<br>Silicone end-capperPotential vinyl nucleophile in cross-coupling reactionsModifier for vinyl addition silicone formulationsPotential vinyl donor in cross-coupling reactionsExtensive review of silicon based cross-coupling agents: Denmark, S. E. et al. "Organic Reactions, Volume 75" Denmark, S. E. ed., John Wiley and Sons, 233, 2011<br></p>
    Formule :C8H18OSi2
    Degré de pureté :97%
    Couleur et forme :Liquid
    Masse moléculaire :186.4
  • TETRAALLYLSILANE

    CAS :
    Formule :C12H20Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :192.37
  • SILICON DIOXIDE, amorphous GEL, 30% in isopropanol

    CAS :
    Formule :SiO2
    Couleur et forme :Translucent Liquid
    Masse moléculaire :60.09
  • STYRYLETHYLTRIS(TRIMETHYLSILOXY)SILANE, mixed isomers, tech

    CAS :
    Formule :C19H38O3Si4
    Degré de pureté :tech
    Couleur et forme :Straw Liquid
    Masse moléculaire :426.84
  • [PERFLUORO(POLYPROPYLENEOXY)]METHOXYPROPYLTRIMETHOXYSILANE, 20% in fluorinated hydrocarbon

    CAS :
    <p>Fluoroalkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>[Perfluoro(polypropyleneoxy)]methoxypropyltrimethoxysilane; (1H,1H,2H,2H-Perfluorodecyl)trimethoxysilane; Heptadecafluorodecyltrimethoxysilane<br>Contact angle, water: 112 ° 20% in fluorinated hydrocarbonTrialkoxy silane<br></p>
    Formule :CF3CF2CF2O(CF2CF2CF2O)nCH2OCH2CH2CH2Si(OCH3)3
    Couleur et forme :Colorless To Light Yellow Liquid
    Masse moléculaire :4000-8000
  • PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE

    CAS :
    <p>Aromatic Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Phenylmethylbis(dimethylamino)silane; Bis(dimethylamino)methylphenylsilane; Bis(dimethylamino)phenylmethylsilane; N,N,N',N',1-Pentamethyl-1-phenylsilanediamine<br></p>
    Formule :C11H20N2Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :208.38
  • 1,3-DIPHENYL-1,1,3,3-TETRAMETHYLDISILAZANE

    CAS :
    <p>Phenyl-Containing Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>Aromatic Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Diphenyltetramethyldisilazane; N-(Dimethylphenylsilyl)-1,1-dimethyl-1-phenyl silane amine; N-(Dimethylphenylsilyl)-1,1-dimethyl-1-phenylsilylamine<br>Similar to SIP6728.0Emits ammonia upon reactionUsed for silylation of capillary columnsSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formule :C16H23NSi2
    Degré de pureté :97%
    Couleur et forme :Liquid
    Masse moléculaire :285.54
  • (3-GLYCIDOXYPROPYL)BIS(TRIMETHYLSILOXY)METHYLSILANE

    CAS :
    Formule :C13H32O4Si3
    Degré de pureté :97% including isomers
    Couleur et forme :Straw Liquid
    Masse moléculaire :336.65
  • TRIS(TRIMETHYLSILOXY)CHLOROSILANE

    CAS :
    Formule :C9H27ClO3Si4
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :331.1
  • 1,3-BIS(3-METHACRYLOXYPROPYL)TETRAMETHYLDISILOXANE

    CAS :
    Formule :C18H34O5Si2
    Degré de pureté :92%
    Couleur et forme :Straw Liquid
    Masse moléculaire :386.64
  • n-DECYLTRIETHOXYSILANE

    CAS :
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Decyltriethoxysilane; Triethoxysilyldecane<br>Trialkoxy silane<br></p>
    Formule :C16H36O3Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :304.54
  • PENTAVINYLPENTAMETHYLCYCLOPENTASILOXANE, 92%

    CAS :
    Formule :C15H30O5Si5
    Degré de pureté :92%
    Couleur et forme :Liquid
    Masse moléculaire :430.82
  • 1,2-BIS(TRIMETHOXYSILYL)ETHANE, tech

    CAS :
    <p>Non-functional Alkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Dipodal Silane<br>Dipodal silanes are a series of adhesion promoters that have intrinsic hydrolytic stabilities up to ~10,000 times greater than conventional silanes and are used in applications such as plastic optics, multilayer printed circuit boards and as adhesive primers for ferrous and nonferrous metals. They have the ability to form up to six bonds to a substrate compared to conventional silanes with the ability to form only three bonds to a substrate. Many conventional coupling agents are frequently used in combination with 10-40% of a non-functional dipodal silane, where the conventional coupling agent provides the appropriate functionality for the application, and the non-functional dipodal silane provides increased durability. Also known as bis-silanes additives enhance hydrolytic stability, which impacts on increased product shelf life, ensures better substrate bonding and also leads to improved mechanical properties in coatings as well as composite applications.<br>Alkyl Silane - Dipodal Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>1,2-Bis(trimethoxysilyl)ethane; 3,3,6,6-Tetramethoxy-2,7-dioxa-3,6-disilaoctane<br>Caution: Inhalation HazardAir Transport ForbiddenVapor pressure, 20 °C: 0.08 mmEmployed in fabrication of multilayer printed circuit boards<br></p>
    Formule :C8H22O6Si2
    Degré de pureté :95%
    Couleur et forme :Liquid
    Masse moléculaire :270.43
  • TRIETHOXYSILYL MODIFIED POLY-1,2-BUTADIENE, 50% in volatile silicone

    CAS :
    <p>Triethoxysilyl modified poly-1,2-butadiene; vinyltriethoxysilane-1,2-butadiene copolymer; triethoxysilyl modified poly(1,2-butadiene)<br>Multi-functional polymeric trialkoxy silane50% in volatile silicone (decamethylcyclopentasiloxane)Hydrophobic modified polybutadieneViscosity: 600-1200 cStPrimer coating for silicone rubbers<br></p>
    Couleur et forme :Pale Yellow Amber Liquid
    Masse moléculaire :3500-4500
  • SIVATE A610: ACTIVATED AMINE FUNCTIONAL SILANE

    CAS :
    <p>SIVATE A610 (Activated AMEO)<br>Activated silane blend of aminopropyltriethoxysilane (SIA0610.0) and (1-(3-triethoxysilyl)propyl)-2,2-diethoxy-1-aza-silacyclopentane (SIT8187.2)Reacts at high speed (seconds compared to hours)Does not require moisture or hydrolysis to initiate surface reactivityReacts with a greater variety of substratesPrimer for high speed UV cure systems (e.g. acrylated urethanes)<br>Activated Amine Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br></p>
    Formule :C9H23NO3Si
    Couleur et forme :Colourless To Straw Liquid
    Masse moléculaire :221.37
  • OCTAPHENYLCYCLOTETRASILOXANE, 95%

    CAS :
    Formule :C48H40O4Si4
    Couleur et forme :White Solid
    Masse moléculaire :793.18
  • 1-METHOXY-1-(TRIMETHYLSILOXY)-2-METHYL-1-PROPENE

    CAS :
    <p>Trimethylsilyl Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>1- Methoxy-1-trimethysiloxy-2-methyl-1-propene; Methyl(trimethylsilyl)dimethylketene acetal; 1-Methoxy-2-methyl-1-(trimethylsiloxy)propene<br>Used for silylation of acids, alcohols, thiols, amides and ketonesNafion SAC-13 has been shown to be a recyclable catalyst for the trimethylsilylation of primary, secondary, and tertiary alcohols in excellent yields and short reaction timesSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formule :C8H18O2Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :174.31
  • (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)TRIMETHOXYSILANE

    CAS :
    Formule :C11H13F13O3Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :468.29