CymitQuimica logo
Silanes

Silanes

Les silanes sont des composés à base de silicium avec un ou plusieurs groupes organiques attachés à un atome de silicium. Ils servent de building blocks cruciaux dans la synthèse organique et inorganique, notamment dans la modification de surface, la promotion de l'adhésion et la production de revêtements et de mastics. Les silanes sont largement utilisés dans l'industrie des semi-conducteurs, le traitement du verre et comme agents de réticulation en chimie des polymères. Chez CymitQuimica, nous proposons une gamme variée de silanes conçus pour vos applications de recherche et industrielles.

Sous-catégories appartenant à la catégorie "Silanes"

1235 produits trouvés pour "Silanes"

Trier par

Degré de pureté (%)
0
100
|
0
|
50
|
90
|
95
|
100
produits par page.
  • DIMETHYLSILA-11-CROWN-4, 95%

    CAS :
    <p>Silacrown (206.31 g/mol)<br>1,1-Dimethyl-1,3,6,9,11-tetraoxa-1-silacycloundecaneCrown ether analogDual end protected PEG<br></p>
    Formule :C8H18O4Si
    Degré de pureté :95%
    Couleur et forme :Liquid
    Masse moléculaire :206.31

    Ref: 3H-SID4220.4

    25g
    À demander
  • 3-[METHOXY(POLYETHYLENEOXY)6-9]PROPYLTRICHLOROSILANE, tech

    CAS :
    <p>Tipped PEG Silane (472-604 g/mol)<br>90% oligomersPEO, Trichlorosilane termination utilized for hydrophilic surface modificationPEGylation reagentHydrogen bonding hydrophilic silaneProvides protein antifouling surface<br></p>
    Formule :CH3O(C2H4O)6-9(CH2)3Cl3Si
    Couleur et forme :Straw Liquid
    Masse moléculaire :472-604

    Ref: 3H-SIM6492.66

    10g
    À demander
  • n-OCTYLSILANE

    CAS :
    <p>Mono-substituted Silane Reducing Agent<br>Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.<br>Trihydridosilane<br>Silyl Hydrides are a distinct class of silanes that behave and react very differently than conventional silane coupling agents. They react with the liberation of byproduct hydrogen. Silyl hydrides can react with hydroxylic surfaces under both non-catalyzed and catalyzed conditions by a dehydrogenative coupling mechanism. Trihydridosilanes react with a variety of pure metal surfaces including gold, titanium, zirconium and amorphous silicon, by a dissociative adsorption mechanism. The reactions generally take place at room temperature and can be conducted in the vapor phase or with the pure silane or solutions of the silane in aprotic solvents. Deposition should not be conducted in water, alcohol or protic solvents.<br>n-Octylsilane; 1-Sila-nonane<br>Fugitive inhibitor of hydrosilylationForms SAMs on titanium, gold and silicon surfacesExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007<br></p>
    Formule :C8H20Si
    Degré de pureté :97%
    Couleur et forme :Liquid
    Masse moléculaire :144.33

    Ref: 3H-SIO6712.5

    50g
    À demander
  • DI-n-BUTYLDIMETHOXYSILANE

    CAS :
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Di-n-butyldimethoxysilane; Dimethoxydi-n-butylsilane<br>Dialkoxy silane<br></p>
    Formule :C10H24O2Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :204.39

    Ref: 3H-SID3214.0

    2kg
    À demander
  • 4-PHENYLBUTYLTRIMETHOXYSILANE

    CAS :
    Formule :C13H22O3Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :254.4

    Ref: 3H-SIP6724.92

    750g
    À demander
  • DECAMETHYLCYCLOPENTASILOXANE

    CAS :
    Formule :C10H30O5Si5
    Degré de pureté :97%
    Couleur et forme :Liquid
    Masse moléculaire :370.77

    Ref: 3H-SID2650.0

    100g
    À demander
    17kg
    À demander
    190kg
    À demander
  • 1-[3-(2-AMINOETHYL)-3-AMINOISOBUTYL]-1,1,3,3,3-PENTAETHOXY-1,3-DISILAPROPANE, 95%

    CAS :
    <p>1-[3-(2-Aminoethyl)-3-aminoisobutyl]-1,1,3,3,3-pentaethoxy-1,3-disilapropane; 3-[2-(aminoethylamino-5-methyl)]-1,1,1,3,3-pentaethoxydisilahexane<br>Diamine functional pendant dipodal silaneAdhesion promoter for metal substratesPrimary amine coupling agent for UV cure and epoxy systems<br></p>
    Formule :C17H42N2O5Si2
    Degré de pureté :95%
    Masse moléculaire :410.7

    Ref: 3H-SIA0587.6

    10g
    À demander
  • DIPHENYLDIETHOXYSILANE

    CAS :
    <p>Arylsilane Cross-Coupling Agent<br>The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.<br>Aromatic Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Diphenyldiethoxysilane; Diethoxydiphenylsilane; 1,1'-(Diethoxysilylene)bis-benzene<br>Vapor pressure, 125 °: 2 mmAlternative to phenyltriethoxysilane for the cross-coupling of a phenyl groupProvides hydrophobic coatings with good thermal and UV resistanceDialkoxy silane<br></p>
    Formule :C16H20O2Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :272.42

    Ref: 3H-SID4525.0

    2kg
    À demander
    18kg
    À demander
    200kg
    À demander
  • n-BUTYLDIMETHYL(DIMETHYLAMINO)SILANE

    CAS :
    <p>Trialkylsilyl Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Butyldimethyl(dimethylamino)silane; Trimethylsilyldimethylamine<br>Reactive aminofunctional organosilaneHighly reactive reagent for bonded phases without acidic byproductSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formule :C8H21NSi
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :159.35

    Ref: 3H-SIB1937.0

    2kg
    À demander
    50g
    À demander
  • n-PROPYLMETHYLDICHLOROSILANE

    CAS :
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Propylmethyldichlorosilane; Dichloromethyl-n-propylsilane<br>Viscosity, 20 °C: 0.8 cSt<br></p>
    Formule :C4H10Cl2Si
    Degré de pureté :97%
    Couleur et forme :Liquid
    Masse moléculaire :157.11

    Ref: 3H-SIP6912.0

    100g
    À demander
  • 3-METHOXYPROPYLTRIMETHOXYSILANE

    CAS :
    Formule :C7H18O4Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :194.3

    Ref: 3H-SIM6493.0

    100g
    À demander
  • 2-CYANOETHYLTRIETHOXYSILANE

    CAS :
    Formule :C9H19NO3Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :217.34

    Ref: 3H-SIC2445.0

    17kg
    À demander
    180kg
    À demander
  • TRIMETHYLMETHOXYSILANE

    CAS :
    Formule :C4H12OSi
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :104.22

    Ref: 3H-SIT8566.0

    14kg
    À demander
    1.5kg
    À demander
    145kg
    À demander
  • TRIS(DIMETHYLAMINO)SILANE

    CAS :
    <p>ALD Material<br>Atomic layer deposition (ALD) is a chemically self-limiting deposition technique that is based on the sequential use of a gaseous chemical process. A thin film (as fine as -0.1 Å per cycle) results from repeating the deposition sequence as many times as needed to reach a certain thickness. The major characteristic of the films is the resulting conformality and the controlled deposition manner. Precursor selection is key in ALD processes, namely finding molecules which will have enough reactivity to produce the desired films yet are stable enough to be handled and safely delivered to the reaction chamber.<br>Tris(dimethylamino)silane; Tris(dimethylamido)silylhydride; N,N,N',N',N'',N''-Hexamethylsilanetriamine<br>AIR TRANSPORT FORBIDDENVapor pressure, 4 °C: 1 6 mmHydrosilylates olefins in presence of Rh2Cl2(CO)4Reacts with ammonia to form silicon nitride prepolymersEmployed in low pressure CVD of silicon nitride<br></p>
    Formule :C6H19N3Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :161.32

    Ref: 3H-SIT8714.0

    50g
    À demander
  • 3-AMINOPROPYLTRIMETHOXYSILANE

    CAS :
    <p>Monoamine Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>3-Aminopropyltrimethoxysilane, Trimethoxysilylpropylamine, ?-Aminopropyltrimethoxysilane, APTES, AMEO, GAPS, A-1100<br>Higher purity material available as SIA0611.1Vapor pressure, 67 °: 5 mmSuperior reactivity in vapor phase and non-aqueous surface treatmentsPrimary amine coupling agent for UV cure and epoxy systemsHydrolysis rate vs SIA0610.0 : 6:1Used to immobilize Cu and Zn Schiff base precatalysts for formation of cyclic carbonatesUsed in microparticle surface modification<br></p>
    Formule :C6H17NO3Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :179.29

    Ref: 3H-SIA0611.0

    25g
    À demander
    2kg
    À demander
    180kg
    À demander
  • DIMETHYLDICHLOROSILANE, 98%

    CAS :
    <p>Bridging Silicon-Based Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Dimethyldichlorosilane; Dichlorodimethylsilane; DMS<br>AIR TRANSPORT FORBIDDENViscosity: 0.47 cStVapor pressure, 17 °C: 100 mmSpecific heat: 0.92 J/g/°ΔHcomb: -2,055 kJ/molΔHvap: 33.5 kJ/molSurface tension: 20.1 mN/mCoefficient of thermal expansion: 1.3 x 10-3Critical temperature: 247.2 °CCritical pressure: 34.4 atmFundamental monomer for siliconesEmployed in the tethering of two olefins for the cross metathesis-coupling step in the synthesis of Attenol AAids in the intramolecular Pinacol reactionReacts with alcohols, diols, and hydroxy carboxylic acidsEmployed as a protecting group/template in C-glycoside synthesisHigher purity available as SID4120.1Summary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formule :C2H6Cl2Si
    Degré de pureté :98%
    Couleur et forme :Straw Amber Liquid
    Masse moléculaire :129.06

    Ref: 3H-SID4120.0

    2kg
    À demander
  • BIS(TRIMETHYLSILYL)CARBODIIMIDE

    CAS :
    Formule :C7H18N2Si2
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :186.4

    Ref: 3H-SIB1856.0

    5g
    À demander
    25g
    À demander
    2kg
    À demander
    14kg
    À demander
  • n-OCTADECYLMETHYLBIS(DIMETHYLAMINO)SILANE


    Formule :C23H52N2Si
    Degré de pureté :92%
    Couleur et forme :Straw Liquid
    Masse moléculaire :384.76

    Ref: 3H-SIO6624.2

    10g
    À demander
  • DI-n-BUTYLDICHLOROSILANE

    CAS :
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Di-n-butyldichlorosilane; Dichlorodi-n-butylsilane<br></p>
    Formule :C8H18Cl2Si
    Degré de pureté :96%
    Couleur et forme :Straw Liquid
    Masse moléculaire :213.22

    Ref: 3H-SID3203.0

    10g
    À demander
    2kg
    À demander
    50g
    À demander
    18kg
    À demander
    750g
    À demander
  • N-(TRIMETHYLSILYL)IMIDAZOLE

    CAS :
    <p>Trimethylsilyl Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>Trimethylsilylimidazole; TMSIM; 1-(Trimethylsilyl)imidazole<br>Powerful silylating agent for alcoholsDoes not react with aliphatic aminesNafion SAC-13 has been shown to be a recyclable catalyst for the trimethylsilylation of primary, secondary, and tertiary alcohols in excellent yields and short reaction timesSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formule :C6H12N2Si
    Degré de pureté :97%
    Couleur et forme :Straw Liquid
    Masse moléculaire :140.26

    Ref: 3H-SIT8590.0

    2kg
    À demander
    100g
    À demander
    14kg
    À demander
    750g
    À demander
    175kg
    À demander