
Silanes
Sous-catégories appartenant à la catégorie "Silanes"
1234 produits trouvés pour "Silanes"
TRIS(TRIMETHYLSILOXY)CHLOROSILANE
CAS :Formule :C9H27ClO3Si4Degré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :331.11,3-DIVINYLTETRAMETHYLDISILOXANE
CAS :Alkenylsilane Cross-Coupling Agent
The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.
1,3-Divinyltetramethyldisiloxane; Diethenyltetramethyldisiloxane; Tetramethyldivinyldisiloxane; Divinyltetramethyldisiloxane
Silicone end-capperPotential vinyl nucleophile in cross-coupling reactionsModifier for vinyl addition silicone formulationsPotential vinyl donor in cross-coupling reactionsExtensive review of silicon based cross-coupling agents: Denmark, S. E. et al. "Organic Reactions, Volume 75" Denmark, S. E. ed., John Wiley and Sons, 233, 2011Formule :C8H18OSi2Degré de pureté :97%Couleur et forme :LiquidMasse moléculaire :186.4SILICON DIOXIDE, precipitated
CAS :Formule :SiO2Couleur et forme :White SolidMasse moléculaire :60.09TETRAALLYLSILANE
CAS :Formule :C12H20SiDegré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :192.371,3-BIS(3-METHACRYLOXYPROPYL)TETRAMETHYLDISILOXANE
CAS :Formule :C18H34O5Si2Degré de pureté :92%Couleur et forme :Straw LiquidMasse moléculaire :386.64(CYCLOHEXYLAMINOMETHYL)TRIETHOXYSILANE
CAS :(N-Cyclohexylaminomethyl)triethoxysilane; [(triethoxysilyl)methyl]aminocyclohexane
Secondary amino functional trialkoxy silaneInternal secondary amine coupling agent for UV cure and epoxy systemsUsed in microparticle surface modificationFormule :C13H29NO3SiDegré de pureté :95%Couleur et forme :Clear To Straw LiquidMasse moléculaire :275.46TRIVINYLMETHYLSILANE
CAS :Formule :C7H12SiDegré de pureté :95%Couleur et forme :Straw LiquidMasse moléculaire :124.26STYRYLETHYLTRIS(TRIMETHYLSILOXY)SILANE, mixed isomers, tech
CAS :Formule :C19H38O3Si4Degré de pureté :techCouleur et forme :Straw LiquidMasse moléculaire :426.841,3-DIPHENYL-1,1,3,3-TETRAMETHYLDISILAZANE
CAS :Phenyl-Containing Blocking Agent
Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.
Aromatic Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Diphenyltetramethyldisilazane; N-(Dimethylphenylsilyl)-1,1-dimethyl-1-phenyl silane amine; N-(Dimethylphenylsilyl)-1,1-dimethyl-1-phenylsilylamine
Similar to SIP6728.0Emits ammonia upon reactionUsed for silylation of capillary columnsSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochureFormule :C16H23NSi2Degré de pureté :97%Couleur et forme :LiquidMasse moléculaire :285.54TRIETHYLSILANE, 98%
CAS :Tri-substituted Silane Reducing Agent
Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.
Triethylsilane; Triethylsilyl hydride; Triethylsilicon hydride
Viscosity: 4.9 cStDipole moment: 0.75 debyeSurface tension: 20.7 mN/mΔHform: -172 kJ/molΔHcomb: -5,324 kJ/molVapor pressure, 20 °: 40 mmSilylates tertiary alcohols in presence of tris(pentafluorophenyl)boraneSilylates arenes in presence of Ru catalyst and t-butylethyleneUsed in reductive cyclization of ynalsReadily converted directly to triethylsilyl carboxylatesUsed to reduce metal saltsEnhances deprotection of t-butoxycarbonyl-protected amines and tert-butyl estersUsed in the reductive amidation of oxazolidinones with amino acids to provide dipeptidesConverts aldehydes to symmetrical and unsymmetrical ethersUsed in the ‘in-situ’ preparation of diborane and haloboranesExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Formule :C6H16SiDegré de pureté :98%Couleur et forme :Colourless LiquidMasse moléculaire :116.281,2-BIS(TRIMETHOXYSILYL)ETHANE, tech
CAS :Non-functional Alkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
Dipodal Silane
Dipodal silanes are a series of adhesion promoters that have intrinsic hydrolytic stabilities up to ~10,000 times greater than conventional silanes and are used in applications such as plastic optics, multilayer printed circuit boards and as adhesive primers for ferrous and nonferrous metals. They have the ability to form up to six bonds to a substrate compared to conventional silanes with the ability to form only three bonds to a substrate. Many conventional coupling agents are frequently used in combination with 10-40% of a non-functional dipodal silane, where the conventional coupling agent provides the appropriate functionality for the application, and the non-functional dipodal silane provides increased durability. Also known as bis-silanes additives enhance hydrolytic stability, which impacts on increased product shelf life, ensures better substrate bonding and also leads to improved mechanical properties in coatings as well as composite applications.
Alkyl Silane - Dipodal Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
1,2-Bis(trimethoxysilyl)ethane; 3,3,6,6-Tetramethoxy-2,7-dioxa-3,6-disilaoctane
Caution: Inhalation HazardAir Transport ForbiddenVapor pressure, 20 °C: 0.08 mmEmployed in fabrication of multilayer printed circuit boardsFormule :C8H22O6Si2Degré de pureté :95%Couleur et forme :LiquidMasse moléculaire :270.43(3-GLYCIDOXYPROPYL)BIS(TRIMETHYLSILOXY)METHYLSILANE
CAS :Formule :C13H32O4Si3Degré de pureté :97% including isomersCouleur et forme :Straw LiquidMasse moléculaire :336.65TRIETHOXYSILYL MODIFIED POLY-1,2-BUTADIENE, 50% in volatile silicone
CAS :Triethoxysilyl modified poly-1,2-butadiene; vinyltriethoxysilane-1,2-butadiene copolymer; triethoxysilyl modified poly(1,2-butadiene)
Multi-functional polymeric trialkoxy silane50% in volatile silicone (decamethylcyclopentasiloxane)Hydrophobic modified polybutadieneViscosity: 600-1200 cStPrimer coating for silicone rubbersCouleur et forme :Pale Yellow Amber LiquidMasse moléculaire :3500-4500PENTAVINYLPENTAMETHYLCYCLOPENTASILOXANE, 92%
CAS :Formule :C15H30O5Si5Degré de pureté :92%Couleur et forme :LiquidMasse moléculaire :430.82VINYLTRICHLOROSILANE
CAS :Formule :C2H3Cl3SiDegré de pureté :97%Couleur et forme :Straw Amber LiquidMasse moléculaire :161.492,2,4-TRIMETHYL-1-OXA-4-AZA-2-SILACYCLOHEXANE
CAS :Formule :C6H15NOSiCouleur et forme :LiquidMasse moléculaire :145.28SIVATE A610: ACTIVATED AMINE FUNCTIONAL SILANE
CAS :SIVATE A610 (Activated AMEO)
Activated silane blend of aminopropyltriethoxysilane (SIA0610.0) and (1-(3-triethoxysilyl)propyl)-2,2-diethoxy-1-aza-silacyclopentane (SIT8187.2)Reacts at high speed (seconds compared to hours)Does not require moisture or hydrolysis to initiate surface reactivityReacts with a greater variety of substratesPrimer for high speed UV cure systems (e.g. acrylated urethanes)
Activated Amine Functional Trialkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.Formule :C9H23NO3SiCouleur et forme :Colourless To Straw LiquidMasse moléculaire :221.371,5-DICHLOROHEXAMETHYLTRISILOXANE, tech
CAS :Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
1,5-Dichlorohexamethyltrisiloxane; Hexamethyldichlorotrisiloxane; 1,5-Dichloro-1,1,3,3,5,5-hexamethyltrisiloxane
ΔHvap: 47.7 kJ/molVapor pressure, 50 °C: 1 mmFormule :C6H18Cl2O2Si3Degré de pureté :92%Couleur et forme :Straw Amber LiquidMasse moléculaire :277.37PHENYLTRIS(DIMETHYLSILOXY)SILANE
CAS :Siloxane-Based Silane Reducing Agent
Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.
Phenyltris(dimethylsiloxy)silane; Phenyl hydride cross-linker; 3-[(Dimethylsilyl)oxy]-1,1,5,5-tetramethyl-3-phenyltrisiloxane
High molecular weight silane reducing agentCrosslinker for vinylphenylsilicone 2-component elastomersExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Formule :C12H26O3Si4Degré de pureté :97%Couleur et forme :LiquidMasse moléculaire :330.68OCTAPHENYLCYCLOTETRASILOXANE, 95%
CAS :Formule :C48H40O4Si4Couleur et forme :White SolidMasse moléculaire :793.18
