
Silanes
Sous-catégories appartenant à la catégorie "Silanes"
1234 produits trouvés pour "Silanes"
3-CHLOROPROPYLMETHYLDIETHOXYSILANE
CAS :3-Chloropropylmethyldiethoxysilane; methyldiethoxy(chloropropyl)silane; (3- chloropropyl)diethoxymethylsilane; 1-chloro-3-(methyldiethoxysilyl)propane
Halogen functional dialkoxy silaneIntermediate for functional silicone polymersFormule :C8H19ClO2SiDegré de pureté :97%Couleur et forme :LiquidMasse moléculaire :210.77BIS(3-TRIMETHOXYSILYLPROPYL)-N-METHYLAMINE
CAS :bis(3-trimethoxysilylpropyl)-N-methylamine; N-methylaminobis(propyltrimethoxysilane)
Tertiary amino functional dipodal silaneDipodal analog of SIM6500.0Formule :C13H33NO6Si2Degré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :355.581-TRIMETHYLSILYLPROPYNE
CAS :Alkynylsilane Cross-Coupling Agent
The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.
1-Trimethylsilylpropyne; Propynyltrimethylsilane; 1-(Trimethylsilyl)prop-1-yne
Forms polymers with very high oxygen permeabilityUseful in Sonogashira reactionsPolymerization catalyzed with TaCl5/(C6H5)3BiConverts aldehydes to 1,3-dienes in presence of Cp2Zr(H)ClUsed in the preparation of alkynylxenon fluoridePolymeric version available, SSP-070Extensive review of silicon based cross-coupling agents: Denmark, S. E. et al. "Organic Reactions, Volume 75" Denmark, S. E. ed., John Wiley and Sons, 233, 2011Formule :C6H12SiDegré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :112.25[PERFLUORO(POLYPROPYLENEOXY)]METHOXYPROPYLTRIMETHOXYSILANE, 20% in fluorinated hydrocarbon
CAS :Fluoroalkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
[Perfluoro(polypropyleneoxy)]methoxypropyltrimethoxysilane; (1H,1H,2H,2H-Perfluorodecyl)trimethoxysilane; Heptadecafluorodecyltrimethoxysilane
Contact angle, water: 112 ° 20% in fluorinated hydrocarbonTrialkoxy silaneFormule :CF3CF2CF2O(CF2CF2CF2O)nCH2OCH2CH2CH2Si(OCH3)3Couleur et forme :Colorless To Light Yellow LiquidMasse moléculaire :4000-8000DI-t-BUTOXYDIACETOXYSILANE, 95%
CAS :Formule :C12H24O6SiDegré de pureté :95%Couleur et forme :LiquidMasse moléculaire :292.4PENTYLMETHYLDICHLOROSILANE
CAS :Formule :C6H14Cl2SiDegré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :185.171-METHOXY-1-(TRIMETHYLSILOXY)-2-METHYL-1-PROPENE
CAS :Trimethylsilyl Blocking Agent
Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.
1- Methoxy-1-trimethysiloxy-2-methyl-1-propene; Methyl(trimethylsilyl)dimethylketene acetal; 1-Methoxy-2-methyl-1-(trimethylsiloxy)propene
Used for silylation of acids, alcohols, thiols, amides and ketonesNafion SAC-13 has been shown to be a recyclable catalyst for the trimethylsilylation of primary, secondary, and tertiary alcohols in excellent yields and short reaction timesSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochureFormule :C8H18O2SiDegré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :174.31(TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)TRIMETHOXYSILANE
CAS :Formule :C11H13F13O3SiDegré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :468.29DIALLYLDIPHENYLSILANE, 92%
CAS :Formule :C18H20SiDegré de pureté :92%Couleur et forme :LiquidMasse moléculaire :264.4411-BROMOUNDECYLTRICHLOROSILANE, 95%
CAS :Formule :C11H22BrCl3SiDegré de pureté :95%Couleur et forme :Straw LiquidMasse moléculaire :368.64n-OCTADECYLMETHYLDICHLOROSILANE, 97%
CAS :Formule :C19H40Cl2SiDegré de pureté :97% including isomersCouleur et forme :Straw LiquidMasse moléculaire :367.522-[(ACETOXY(POLYETHYLENEOXY)PROPYL]TRIETHOXYSILANE, 95%
CAS :Ester Functional Trialkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
Hydrophilic Silane - Polar - Hydrogen Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
2-[(Acetoxy(polyethyleneoxy)propyl]triethoxysilane; (Triethoxysilylpropylpolyethylene oxide)acetate
Viscosity: 50 cStFunctional PEG Silane (500-700 g/mol)PEO, Ester, Triethoxysilane termination utilized for hydrophilic surface modificationDual functional PEGylation reagentHydrogen bonding hydrophilic silaneUsed in microparticle surface modificationFormule :CH3O(C2H4O)6-9(CH2)3Si(OCH3)3Degré de pureté :95%Couleur et forme :Straw Amber LiquidMasse moléculaire :500-7003-AMINOPROPYLTRIS(TRIMETHYLSILOXY)SILANE, 95%
CAS :Formule :C12H35NO3SiDegré de pureté :95%Couleur et forme :Straw LiquidMasse moléculaire :353.76Ω-BUTYLPOLY(DIMETHYLSILOXANYL)ETHYLTRIETHOXYSILANE, tech
CAS :Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
ω-Butylpoly(dimethylsiloxanyl)ethyltriethoxysilane; α-Butyl-ω-triethoxysilylethyl terminated polydimethylsiloxane
5-8 (Me2SiO)Hydrophobic surface treatmentFormule :C24H52O3SiCouleur et forme :Straw LiquidMasse moléculaire :416.76PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE
CAS :Aromatic Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Phenylmethylbis(dimethylamino)silane; Bis(dimethylamino)methylphenylsilane; Bis(dimethylamino)phenylmethylsilane; N,N,N',N',1-Pentamethyl-1-phenylsilanediamineFormule :C11H20N2SiDegré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :208.381,3-DIPHENYLTETRAKIS(DIMETHYLSILOXY)DISILOXANE, 92%
CAS :Formule :C20H38O5Si6Degré de pureté :92%Couleur et forme :LiquidMasse moléculaire :527.03DODECAMETHYLCYCLOHEXASILOXANE
CAS :Formule :C12H36O6Si6Degré de pureté :97%Couleur et forme :LiquidMasse moléculaire :445.933-METHACRYLOXYPROPYLDIMETHYLCHLOROSILANE, tech
CAS :Formule :C9H17ClO2SiDegré de pureté :90%Couleur et forme :Straw LiquidMasse moléculaire :220.77n-DECYLTRICHLOROSILANE
CAS :Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
n-Decyltrichlorosilane; Trichlorosilyldecane; TrichlorodecylsilaneFormule :C10H21Cl3SiDegré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :275.72HEXAMETHYLCYCLOTRISILOXANE, 98%
CAS :Hexamethylcyclotrisiloxane (HMCTS, D3)
Undergoes ring-opening anionic polymerizationReacts with three equivalents of an organolithium reagent to give derivatized dimethylsilanolsFormule :C6H18O3Si3Degré de pureté :98%Couleur et forme :SolidMasse moléculaire :222.46
