
Silanes
Les silanes sont des composés à base de silicium avec un ou plusieurs groupes organiques attachés à un atome de silicium. Ils servent de building blocks cruciaux dans la synthèse organique et inorganique, notamment dans la modification de surface, la promotion de l'adhésion et la production de revêtements et de mastics. Les silanes sont largement utilisés dans l'industrie des semi-conducteurs, le traitement du verre et comme agents de réticulation en chimie des polymères. Chez CymitQuimica, nous proposons une gamme variée de silanes conçus pour vos applications de recherche et industrielles.
Sous-catégories appartenant à la catégorie "Silanes"
1235 produits trouvés pour "Silanes"
Trier par
Degré de pureté (%)
0
100
|
0
|
50
|
90
|
95
|
100
1,1,3,3-TETRAMETHYLDISILOXANE, 98%
CAS :<p>Alkenylsilane Cross-Coupling Agent<br>The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.<br>ALD Material<br>Atomic layer deposition (ALD) is a chemically self-limiting deposition technique that is based on the sequential use of a gaseous chemical process. A thin film (as fine as -0.1 Å per cycle) results from repeating the deposition sequence as many times as needed to reach a certain thickness. The major characteristic of the films is the resulting conformality and the controlled deposition manner. Precursor selection is key in ALD processes, namely finding molecules which will have enough reactivity to produce the desired films yet are stable enough to be handled and safely delivered to the reaction chamber.<br>Siloxane-Based Silane Reducing Agent<br>Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.<br>1,1,3,3-Tetramethyldisiloxane; 1,1-Dihydro-1,1,3,3-tetramethyldisiloxane; TMDO; TMDS<br>Viscosity, 20 °C: 0.56 cStΔHcomb: 4,383 kJ/molΔHvap: 30.3 kJ/molVapor pressure, 27 °C: 194.8 mmReduces aromatic aldehydes to benzyl halidesEmployed in reductive halogenation of aldehydes and epoxidesUsed to link ferrocenylsilane, polyolefin block copolymers into stable cylindrical formsEndcapper for polymerization of hydride terminated siliconesOrganic reducing agentEmployed in high-yield reduction of amides to amines in the presence of other reducible groupsReduces anisoles to arenesHydrosilylates terminal alkynes to form alkenylsilanes capable of cross-coupling with aryl and vinyl halidesExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Extensive review of silicon based cross-coupling agents: Denmark, S. E. et al. "Organic Reactions, Volume 75" Denmark, S. E. ed., John Wiley and Sons, 233, 2011<br></p>Formule :C4H14OSi2Degré de pureté :98%Couleur et forme :LiquidMasse moléculaire :134.22VINYLTRIS(METHYLETHYLKETOXIMINO)SILANE, tech
CAS :<p>Olefin Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Vinyltris(methylethylketoximino)silane; Tris(methylethylketoximino)vinylsilane; Tri(methylethylketoximino)silylethylene<br>Neutral cross-linker/coupling agent for condensation cure siliconesByproduct: methylethylketoximeCopolymerizes with ethylene to form moisture crosslinkable polyethylene<br></p>Formule :C14H27N3O3SiDegré de pureté :92%Couleur et forme :Straw LiquidMasse moléculaire :313.47TRIS(DIMETHYLAMINO)METHYLSILANE
CAS :Formule :C7H21N3SiDegré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :175.35(3-GLYCIDOXYPROPYL)METHYLDIETHOXYSILANE
CAS :<p>(3-glycidoxypropyl)methyldiethoxysilane; 3-(2,3-epoxypropoxypropyl)methyldiethoxysilane; [3-(2,3- epoxypropoxy)propyl]diethoxymethylsilane; 3- (methyldiethoxysilyl)propyl glycidyl ether<br>Epoxy functional dialkoxy silaneViscosity: 3.0 cStEmployed in scratch resistant coatings for eye glassesCoupling agent for latex systems with reduced tendancy to gel compared to SIG5840.0Coupling agent for UV cure and epoxy systemsEpoxy silane treated surfaces convert to hydrophilic-diols when exposed to moisture<br></p>Formule :C11H24O4SiDegré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :248.393-CYANOPROPYLTRICHLOROSILANE
CAS :Formule :C4H6Cl3NSiDegré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :202.54n-OCTYLTRIETHOXYSILANE, 98%
CAS :<p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Octyltriethoxysilane; Triethoxysilyloctane<br>Viscosity: 1.9 cStVapor pressure, 75 °C: 1 mmWidely used in architectural hydrophobationSurface treatment for pigments in cosmetic vehicles and compositesMay be formulated to stable water emulsionsSuppresses nucleation behavior in ZnO-polylactic acid compositesTrialkoxy silane<br></p>Formule :C14H32O3SiDegré de pureté :97.5%Couleur et forme :Straw LiquidMasse moléculaire :276.483-[METHOXY(POLYETHYLENEOXY)6-9]PROPYLTRIS(DIMETHYLAMINO)SILANE, tech
<p>Tipped PEG Silane (500-855 g/mol)<br>PEO, Tris(dimethylamino)silane termination utilized for hydrophilic surface modificationPEGylation reagentFor MOCVD of hydrophilic films<br></p>Formule :CH3O(CH2CH2O)6-9(CH2)3Si[N(CH3)2]3Couleur et forme :Straw LiquidMasse moléculaire :500-855METHYLTRIETHOXYSILANE
CAS :<p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Methyltriethoxysilane; Triethoxymethylsilane; Methyltriethyloxysilane<br>Viscosity: 0.6 cStDipole moment: 1.72 debyeVapor pressure, 25 °: 6 mmLow cost hydrophobic surface treatmentAlkoxy crosslinker for condensation cure siliconesTrialkoxy silane<br></p>Formule :C7H18O3SiDegré de pureté :97%Couleur et forme :LiquidMasse moléculaire :178.3(3-GLYCIDOXYPROPYL)PENTAMETHYLDISILOXANE
CAS :Formule :C11H26O3Si2Degré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :262.5DIMETHYLDICHLOROSILANE, 99+% 5-GAL DRUM
CAS :<p>Bridging Silicon-Based Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Dimethyldichlorosilane; Dichlorodimethylsilane; DMS<br>AIR TRANSPORT FORBIDDENRedistilledViscosity: 0.47 cStVapor pressure, 17 °C: 100 mmSpecific heat: 0.92 J/g/°ΔHcomb: -2,055 kJ/molΔHvap: 33.5 kJ/molSurface tension: 20.1 mN/mCoefficient of thermal expansion: 1.3 x 10-3Critical temperature: 247.2 °CCritical pressure: 34.4 atmFundamental monomer for siliconesEmployed in the tethering of two olefins for the cross metathesis-coupling step in the synthesis of Attenol AAids in the intramolecular Pinacol reactionReacts with alcohols, diols, and hydroxy carboxylic acidsEmployed as a protecting group/template in C-glycoside synthesisAvailable in a lower purity as SID4120.0Summary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>Formule :C2H6Cl2SiDegré de pureté :99+%Couleur et forme :Straw LiquidMasse moléculaire :129.06(3,3,3-TRIFLUOROPROPYL)METHYLCYCLOTRISILOXANE
CAS :Formule :C12H21F9O3Si3Degré de pureté :97%Couleur et forme :White SolidMasse moléculaire :468.55(3-PHENYLPROPYL)DIMETHYLCHLOROSILANE
CAS :<p>Aromatic Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>(3-Phenylpropyl)dimethylchlorosilane; 3-(Chlorodimethylsilylpropyl)benzene; Chlorodimethyl(3-phenylpropyl)silane<br></p>Formule :C11H17ClSiDegré de pureté :97%Couleur et forme :Pale Yellow LiquidMasse moléculaire :212.78ISOOCTYLTRIETHOXYSILANE
CAS :<p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Isooctyltriethoxysilane; Triethoxysilyl-2,4,4-trimethypentane<br>Viscosity: 2.1 cStVapor pressure, 112 °C: 10mmArchitectural water-repellentWater scavenger for sealed lubricant systemsTrialkoxy silane<br></p>Formule :C14H32O3SiDegré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :276.48BIS[3-(TRIETHOXYSILYL)PROPYL]TETRASULFIDE, tech
CAS :<p>bis[3-(triethoxysilyl)propyl]tetrasulfide; bis(triethoxysilylpropyl)tetrasulfane; TESPT<br>Sulfur functional dipodal silaneContains distribution of S2 - S10 species; average 3.8Viscosity: 11 cStAdhesion promoter for precious metalsCoupling agent/vulcanizing agent for "green" tiresAdhesion promoter for physical vapor deposition (PVD) copper on parylene<br></p>Formule :C18H42O6S4Si2Degré de pureté :95%Couleur et forme :Pale Yellow Amber LiquidMasse moléculaire :538.941,3-BIS(HYDROXYPROPYL)TETRAMETHYLDISILOXANE, tech 95
CAS :Formule :C10H26O3Si2Degré de pureté :95%Couleur et forme :Straw LiquidMasse moléculaire :250.485-HEXENYLTRIMETHOXYSILANE, tech
CAS :<p>Olefin Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>5-Hexenyltrimethoxysilane; Trimethoxysilylhexene<br>Adhesion promoter for Pt-cure siliconesUsed in microparticle surface modification<br></p>Formule :C9H20O3SiDegré de pureté :techCouleur et forme :Straw LiquidMasse moléculaire :204.34(N,N-DIETHYL-3-AMINOPROPYL)TRIMETHOXYSILANE
CAS :<p>(N,N-Diethyl-3-aminopropyl)trimethoxysilane; N-(3-trimethoxysilyl)propyl-N,N-diethylamine, N,N-diethyl-3-(trimethoxysilyl)propylamine<br>Tertiary amino functional silanesProvides silica-supported catalyst for 1,4-addition reactionsUsed together w/ SIA0591.0 to anchor PdCl2 catalyst to silica for acceleration of the Tsuji-Trost reaction in the allylation of nucleophiles<br></p>Formule :C10H25NO3SiDegré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :235.4(3-(N-ETHYLAMINO)ISOBUTYL)TRIMETHOXYSILANE
CAS :<p>(3-(N-Ethylamino)isobutyl)trimethoxysilane; 3-(trimethoxysilyl)-N-ethyl-2-methyl-1-propanamine<br>Secondary amino functional trialkoxy silaneReacts with isocyanate resins (urethanes) to form moisture cureable systemsPrimary amine coupling agent for UV cure and epoxy systemsUsed in microparticle surface modificationAdvanced cyclic analog available: SIE4891.0<br></p>Formule :C9H23NO3SiDegré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :221.37BIS(3-TRIMETHOXYSILYLPROPYL)AMINE, 96%
CAS :<p>Amine Functional Alkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Dipodal Silane<br>Dipodal silanes are a series of adhesion promoters that have intrinsic hydrolytic stabilities up to ~10,000 times greater than conventional silanes and are used in applications such as plastic optics, multilayer printed circuit boards and as adhesive primers for ferrous and nonferrous metals. They have the ability to form up to six bonds to a substrate compared to conventional silanes with the ability to form only three bonds to a substrate. Many conventional coupling agents are frequently used in combination with 10-40% of a non-functional dipodal silane, where the conventional coupling agent provides the appropriate functionality for the application, and the non-functional dipodal silane provides increased durability. Also known as bis-silanes additives enhance hydrolytic stability, which impacts on increased product shelf life, ensures better substrate bonding and also leads to improved mechanical properties in coatings as well as composite applications.<br>Bis-(3-trimethoxysilylpropyl)amine<br>Secondary amine allows more control of reactivity with isocyanatesEmployed in optical fiber coatingsUsed in combination with silane, (3-Acryloxypropyl)trimethoxysilane, (SIA0200.0), to increase strength and hydrolytic stability of dental compositesDipodal analog of AMEO (SIA0611.0 )<br></p>Formule :C12H31NO6Si2Degré de pureté :96%Couleur et forme :Straw LiquidMasse moléculaire :341.56PHENYLTRICHLOROSILANE
CAS :<p>Aromatic Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Phenyltrichlorosilane; Trichlorophenylsilane; Trichlorosilylbenzene<br>Viscosity: 1.08 cStΔHvap: 47.7 kJ/molDipole moment: 2.41 debyeSurface tension: 27.9 mN/mVapor pressure, 75 °C: 10 mmCritical temperature: 438 °CSpecific heat: 1.00 J/g/°CCoefficient of thermal expansion: 1.2 x 10-3Intermediate for high refractive index resinsImmobilizes pentacene films<br></p>Formule :C6H5Cl3SiDegré de pureté :97%Couleur et forme :LiquidMasse moléculaire :211.55
