Le produit a bien été ajouté au panier.

discount label
H-KLGGALQAK-OH
Vue en 3D

Biosynth logo

H-KLGGALQAK-OH

Ref. 3D-PP43331

1mg
217,00 €
10mg
253,00 €
100mg
455,00 €
Livraison estimée en/au États-Unis, le vendredi 27 décembre 2024

Informations sur le produit

Nom :
H-KLGGALQAK-OH
Synonymes :
  • NH2-Lys-Leu-Gly-Gly-Ala-Leu-Gln-Ala-Lys-OH
Description :

Peptide H-KLGGALQAK-OH is a Research Peptide with significant interest within the field academic and medical research. This peptide is available for purchase at Cymit Quimica in multiple sizes and with a specification of your choice. Recent citations using H-KLGGALQAK-OH include the following: DeepAIR: A deep learning framework for effective integration of sequence and 3D structure to enable adaptive immune receptor analysis Y Zhao , B He , F Xu, C Li , Z Xu, X Su, H He, Y Huang - Science , 2023 - science.orghttps://www.science.org/doi/abs/10.1126/sciadv.abo5128 TEINet: a deep learning framework for prediction of TCR-epitope binding specificity Y Jiang , M Huo, S Cheng Li - Briefings in Bioinformatics, 2023 - academic.oup.comhttps://academic.oup.com/bib/article-abstract/24/2/bbad086/7076118 Human thymopoiesis produces polyspecific CD8+ alpha/beta T cells responding to multiple viral antigens V Quiniou, P Barennes, V Mhanna, P Stys - Elife, 2023 - elifesciences.orghttps://elifesciences.org/articles/81274 Unseen Epitope-TCR Interaction Prediction based on Amino Acid Physicochemical Properties R Raha, Y Ding , Q Liu , FX Wu - 2022 IEEE International , 2022 - ieeexplore.ieee.orghttps://ieeexplore.ieee.org/abstract/document/9995066/ Enhancing TCR specificity predictions by combined pan-and peptide-specific training, loss-scaling, and sequence similarity integration MF Jensen, M Nielsen - Elife, 2024 - elifesciences.orghttps://elifesciences.org/articles/93934 NetTCR 2.2-Improved TCR specificity predictions by combining pan-and peptide-specific training strategies, loss-scaling and integration of sequence similarity MF Jensen, M Nielsen - bioRxiv, 2023 - biorxiv.orghttps://www.biorxiv.org/content/10.1101/2023.10.12.562001.abstract TCRpcDist: estimating TCR physico-chemical similarity to analyze repertoires and predict specificities MAS Perez, J Chiffelle , S Bobisse, F Mayol-Rullan - bioRxiv, 2023 - biorxiv.orghttps://www.biorxiv.org/content/10.1101/2023.06.15.545077.abstract ATM-TCR: TCR-epitope binding affinity prediction using a multi-head self-attention model M Cai, S Bang , P Zhang, H Lee - Frontiers in immunology, 2022 - frontiersin.orghttps://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2022.893247 Clonally focused public and private T cells in resected brain tissue from surgeries to treat children with intractable seizures JW Chang, SD Reyes, E Faure-Kumar - Frontiers in , 2021 - frontiersin.orghttps://www.frontiersin.org/articles/10.3389/fimmu.2021.664344/full Clonally Focused Public and Private T Cells in Resected Brain Tissue From Surgeries to JW Chang, SD Reyes, E Faure-Kumar - 2021 - scholar.archive.orghttps://scholar.archive.org/work/jxj6trqn2fczfi74ebpofb43fa/access/wayback/https://escholarship.org/content/qt4qh2m4x9/qt4qh2m4x9.pdf?t=qzpyuu TPBTE: A model based on convolutional Transformer for predicting the binding of TCR to epitope J Wu, M Qi , F Zhang, Y Zheng - Molecular Immunology, 2023 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0161589023000536 Machine Learning Prediction of TCR-Epitope Binding J Faust, YS Song - 2022 - eecs.berkeley.eduhttps://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-216.pdf DECODE: a computational pipeline to discover T cell receptor binding rules I Papadopoulou, AP Nguyen , A Weber - , 2022 - academic.oup.comhttps://academic.oup.com/bioinformatics/article-abstract/38/Supplement_1/i246/6617535 Predicting TCR sequences for unseen antigen epitopes using structural and sequence features H Zhang, H Ji, C Zhang, Z Qiong - 2024 - researchsquare.comhttps://www.researchsquare.com/article/rs-3891946/latest Predicting TCR sequences for unseen antigen epitopes using structural and sequence features H Ji, XX Wang, Q Zhang, C Zhang - Briefings in , 2024 - academic.oup.comhttps://academic.oup.com/bib/article-abstract/25/3/bbae210/7665592 Deep learning predictions of TCR-epitope interactions reveal epitope-specific chains in dual alpha T cells G Croce , S Bobisse, DL Moreno, J Schmidt - Nature , 2024 - nature.comhttps://www.nature.com/articles/s41467-024-47461-8 TCRfp: a new fingerprint-based approach for TCR repertoire analysis F Mayol-Rullan, M Bugnon , MAS Perez, V Zoete - bioRxiv, 2023 - biorxiv.orghttps://www.biorxiv.org/content/10.1101/2023.12.19.572261.abstract TAPIR: a T-cell receptor language model for predicting rare and novel targets E Fast , M Dhar, B Chen - bioRxiv, 2023 - ncbi.nlm.nih.govhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515850/ A comparison of clustering models for inference of T cell receptor antigen specificity D Hudson, A Lubbock, M Basham , H Koohy - ImmunoInformatics, 2024 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S266711902400003X STAPLER: efficient learning of TCR-peptide specificity prediction from full-length TCR-peptide data BPY Kwee, M Messemaker , E Marcus , G Oliveira - bioRxiv, 2023 - biorxiv.orghttps://www.biorxiv.org/content/10.1101/2023.04.25.538237.abstract

Avis:
Nos produits sont destinés uniquement à un usage en laboratoire. Pour tout autre usage, veuillez nous contacter.
Marque:
Biosynth
Stockage à long terme :
Notes :

Propriétés chimiques

MDL:
Point de fusion :
Point d'ébullition :
Point d'éclair :
Densité :
Concentration :
EINECS :
Merck :
Code SH :

Informations sur les risques

Numéro ONU :
EQ:
Classe :
Phrases R :
Phrases S :
Transport aérien interdit :
Informations sur les risques :
Groupe d'emballage :
LQ :

Question d’ordre technique sur : 3D-PP43331 H-KLGGALQAK-OH

Veuillez plutôt utiliser le panier afin de demander un devis ou passer commande

Si vous souhaitez demander un devis ou passer commande, veuillez plutôt ajouter les produits souhaités à votre panier, puis demander un devis ou passer commande à partir de votre panier. C'est une méthode plus rapide, plus économique, et vous pourrez bénéficier des remises disponibles ainsi que d'autres avantages

* Champ obligatoire
Bienvenue chez CymitQuimica !Nous utilisons des cookies pour améliorer votre visite. Nous n’incluons pas de publicité.

Veuillez consulter notre Politique de Cookies pour plus de détails ou ajustez vos préférences dans "Configurer".