CAS 58130-03-3
:1,3-Bis(3-metacrilossipropil)tetrametildisilossano
Descrizione:
1,3-Bis(3-metacrilossipropil)tetrametildisilossano, con numero CAS 58130-03-3, è un composto a base di silossano caratterizzato dalla sua struttura unica che incorpora sia gruppi funzionali di metacrilato che legami di silossano. Questo composto presenta tipicamente una bassa viscosità, rendendolo adatto per varie applicazioni in rivestimenti, adesivi e sigillanti. La presenza di gruppi di metacrilato consente la polimerizzazione in condizioni UV o termiche, facilitando la formazione di reti reticolate che migliorano le proprietà meccaniche e la durabilità. Inoltre, i segmenti di silossano contribuiscono alla flessibilità, stabilità termica e resistenza all'umidità, che sono vantaggiosi in molte applicazioni industriali. La sua compatibilità con altri materiali organici e inorganici amplia ulteriormente la sua utilità nella formulazione di materiali avanzati. In generale, 1,3-Bis(3-metacrilossipropil)tetrametildisilossano è apprezzato per la sua capacità di combinare le proprietà benefiche dei silossani con la reattività dei metacrilati, rendendolo un componente versatile nello sviluppo di sistemi polimerici ad alte prestazioni.
Formula:C20H40O6Si3
InChI:InChI=1/C18H34O5Si2/c1-15(2)17(19)21-11-9-13-24(5,6)23-25(7,8)14-10-12-22-18(20)16(3)4/h1,3,9-14H2,2,4-8H3
InChI key:InChIKey=DDHQGOQEUJIUOC-UHFFFAOYSA-N
SMILES:C=C(C)C(=O)OCCC[Si](C)(C)O[Si](C)(C)CCCOC(=O)C(=C)C
Sinonimi:- (1,1,3,3-Tetramethyldisiloxane-1,3-Diyl)Dipropane-3,1-Diyl Bis(2-Methylprop-2-Enoate)
- (1,1,3,3-Tetramethyldisiloxane-1,3-diyl)dipropane-1,3-diyl dimethacrylate
- 1,3-Bis(3-methacryloyloxypropyl)tetramethyldisiloxane
- 2-Propenoic acid, 2-methyl-, (1,1,3,3-tetramethyl-1,3-disiloxanediyl)di-3,1-propanediyl ester
- 2-Propenoic acid, 2-methyl-, 1,1'-((1,1,3,3-tetramethyl-1,3-disiloxanediyl)di-3,1-propanediyl) ester
- 2Ma4000
- Dms-R 05
- Dms-R 11
- Dms-R 18
- Dms-R 22
- Dms-R 31
- Fm 7711
- Fm 7726
- Gp 446
- Gp 478
- Methacryloxypropyl-terminated polydimethylsiloxane
- Poly[oxy(dimethylsilylene)], α-[dimethyl[3-[(2-methyl-1-oxo-2-propen-1-yl)oxy]propyl]silyl]-ω-[[dimethyl[3-[(2-methyl-1-oxo-2-propen-1-yl)oxy]propyl]silyl]oxy]-
- Poly[oxy(dimethylsilylene)], α-[dimethyl[3-[(2-methyl-1-oxo-2-propenyl)oxy]propyl]silyl]-ω-[[dimethyl[3-[(2-methyl-1-oxo-2-propenyl)oxy]propyl]silyl]oxy]-
- Ps 583
- SP 1 (silicone)
- Silaplane FM 7711
- Silaplane FM 7721
- Silaplane FM 7725
- Silaplane FM 7726
- Tc 2000
- X 22-164A
- X 22-164As
- X 22-164B
- X 22-164C
- X 22-164E
- α,ω-Bis(3-methacryloxypropyldimethylsilyl)-terminated polydimethylsiloxane
- METHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE, 50-90 cSt
- METHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE, 4-6cs
- POLYDIMETHYLSILOXANE, METHACRYLOXYPROPYL TERMINATED: VISCOSITY 8-14 CST.
- METHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANES
- METHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE, 50-90cs
- METHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE, 125-250cs
- METHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE, 8-14 cSt
- POLYDIMETHYLSILOXANE, METHACRYLOXYPROPYL TERMINATED: VISCOSITY 50-90 CST.
- POLYDIMETHYLSILOXANE, METHACRYLOXYPROPYL TERMINATED: VISCOSITY 125-250 CST.
- METHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE, 4-6 cSt
- METHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE, 1,000 cSt
- Methacryloxypropyl Terminated PDMS Fluids
- METHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE, 1,000cs
- POLYDIMETHYLSILOXANE, METHACRYLOXYPROPYL TERMINATED
- METHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE, 8-14cs
- Poly[oxy(dimethylsilylene)],a-[dimethyl[3-[(2-methyl-1-oxo-2-propen-1-yl)oxy]propyl]silyl]-w-[[dimethyl[3-[(2-methyl-1-oxo-2-propen-1-yl)oxy]propyl]silyl]oxy]-
- POLYDIMETHYLSILOXANE, MONOMETHACRYLOXYPROPYL TERMINATED
- METHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE, 125-250 cSt
- Vedi altri sinonimi
Ordinare per
Purezza (%)
0
100
|
0
|
50
|
90
|
95
|
100
11 prodotti.
Methacryloxypropyl Terminated Polydimethylsiloxanes
CAS:Methacryloxypropyl Terminated PolydimethylsiloxanesPurezza:Mn~25000METHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE, 8-14 cSt
CAS:<p>DMS-R11: Methacryloxypropyl Terminated PDMS, 8-14 cSt (Telechelic Functional Fluid)<br>Methacrylate and Acrylate functional siloxanes undergo the same reactions generally associated with methacrylates and acrylates, the most conspicuous being radical induced polymerization. Unlike vinylsiloxanes which are sluggish compared to their organic counterparts, methacrylate and acrylate siloxanes have similar reactivity to their organic counterparts. The principal applications of methacrylate functional siloxanes are as modifiers to organic systems. Upon radical induced polymerization, methacryloxypropyl terminated siloxanes by themselves only increase in viscosity. Copolymers with greater than 5 mole % methacrylate substitution crosslink to give non-flowable resins. Acrylate functional siloxanes cure greater than ten times as fast methacrylate functional siloxanes on exposure to UV in the presence of a photoinitiator such as ethylbenzoin. <br>Oxygen is an inhibitor for methacrylate polymerization in general. The high oxygen permeability of siloxanes usually makes it necessary to blanket these materials with nitrogen or argon in order to obtain reasonable cures.<br>DMS-R11 Properties<br>Viscosity: 8-14 cStMolecular Weight: 900-1,200 g/molRefractive Index: 1.422<br></p>Colore e forma:LiquidPeso molecolare:900-1200METHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE, 1,000 cSt
CAS:<p>DMS-R31: Methacryloxypropyl Terminated PDMS, 1,000 cSt (Telechelic Functional Fluid)<br>Methacrylate and Acrylate functional siloxanes undergo the same reactions generally associated with methacrylates and acrylates, the most conspicuous being radical induced polymerization. Unlike vinylsiloxanes which are sluggish compared to their organic counterparts, methacrylate and acrylate siloxanes have similar reactivity to their organic counterparts. The principal applications of methacrylate functional siloxanes are as modifiers to organic systems. Upon radical induced polymerization, methacryloxypropyl terminated siloxanes by themselves only increase in viscosity. Copolymers with greater than 5 mole % methacrylate substitution crosslink to give non-flowable resins. Acrylate functional siloxanes cure greater than ten times as fast methacrylate functional siloxanes on exposure to UV in the presence of a photoinitiator such as ethylbenzoin. <br>Oxygen is an inhibitor for methacrylate polymerization in general. The high oxygen permeability of siloxanes usually makes it necessary to blanket these materials with nitrogen or argon in order to obtain reasonable cures.<br>DMS-R31 Properties<br>Viscosity: 1,000 cStMolecular Weight: 25,000 g/molRefractive Index: 1.404<br></p>Colore e forma:LiquidPeso molecolare:25000.0METHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE, 125-250 cSt
CAS:Colore e forma:LiquidPeso molecolare:10000.0METHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE, 4-6 cSt
CAS:<p>DMS-R05: Methacryloxypropyl Terminated PDMS, 4-6 cSt (Telechelic Functional Fluid)<br>Methacrylate and Acrylate functional siloxanes undergo the same reactions generally associated with methacrylates and acrylates, the most conspicuous being radical induced polymerization. Unlike vinylsiloxanes which are sluggish compared to their organic counterparts, methacrylate and acrylate siloxanes have similar reactivity to their organic counterparts. The principal applications of methacrylate functional siloxanes are as modifiers to organic systems. Upon radical induced polymerization, methacryloxypropyl terminated siloxanes by themselves only increase in viscosity. Copolymers with greater than 5 mole % methacrylate substitution crosslink to give non-flowable resins. Acrylate functional siloxanes cure greater than ten times as fast methacrylate functional siloxanes on exposure to UV in the presence of a photoinitiator such as ethylbenzoin. <br>Oxygen is an inhibitor for methacrylate polymerization in general. The high oxygen permeability of siloxanes usually makes it necessary to blanket these materials with nitrogen or argon in order to obtain reasonable cures.<br>DMS-R05 Properties<br>Viscosity: 4-6 cStMolecular Weight: 380-550 g/molRefractive Index: 1.448<br></p>Colore e forma:Pale Yellow LiquidPeso molecolare:380-550Methacryloxypropyl Terminated PolyDimethylsiloxane cSt 125-250
CAS:Colore e forma:LiquidPeso molecolare:0.0Methacryloxypropyl Terminated PolyDimethylsiloxane cSt 50-90
CAS:Colore e forma:Liquid, ClearPeso molecolare:0.0Methacryloxypropyl terminated polydimethylsiloxane, 1000 cSt
CAS:Colore e forma:Liquid, ClearPeso molecolare:0.0Methacryloxypropyl Terminated Polydimethylsiloxane, 8-14 cSt
CAS:Colore e forma:LiquidPeso molecolare:0.0Methacryloxypropyl terminated polydimethylsiloxanes
CAS:<p>MW 20,000 - 30,000</p>Formula:C20H40O6Si3Purezza:Min. 95%Peso molecolare:460.8 g/molMETHACRYLOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE, 50-90 cSt
CAS:<p>DMS-R18: Methacryloxypropyl Terminated PDMS, 50-90 cSt (Telechelic Functional Fluid)<br>Methacrylate and Acrylate functional siloxanes undergo the same reactions generally associated with methacrylates and acrylates, the most conspicuous being radical induced polymerization. Unlike vinylsiloxanes which are sluggish compared to their organic counterparts, methacrylate and acrylate siloxanes have similar reactivity to their organic counterparts. The principal applications of methacrylate functional siloxanes are as modifiers to organic systems. Upon radical induced polymerization, methacryloxypropyl terminated siloxanes by themselves only increase in viscosity. Copolymers with greater than 5 mole % methacrylate substitution crosslink to give non-flowable resins. Acrylate functional siloxanes cure greater than ten times as fast methacrylate functional siloxanes on exposure to UV in the presence of a photoinitiator such as ethylbenzoin. <br>Oxygen is an inhibitor for methacrylate polymerization in general. The high oxygen permeability of siloxanes usually makes it necessary to blanket these materials with nitrogen or argon in order to obtain reasonable cures.<br>DMS-R18 Properties<br>Viscosity: 50-90 cStMolecular Weight: 4,500-5,500 g/molRefractive Index: 1.409<br></p>Colore e forma:LiquidPeso molecolare:4500-5500



