
Silani
Sottocategorie di "Silani"
Trovati 1234 prodotti di "Silani"
1,1,3,3,5,5-Hexaethoxy-1,3,5-trisilacyclohexane
CAS:Formula:C15H36O6Si3Purezza:>90.0%(GC)Colore e forma:Colorless to Almost colorless clear liquidPeso molecolare:396.70tert-Butoxydiphenylchlorosilane (stabilized with CaCO3)
CAS:Formula:C16H19ClOSiPurezza:>95.0%(GC)Colore e forma:Colorless to Almost colorless clear liquidPeso molecolare:290.86Diethyl(methyl)silane
CAS:Formula:C5H14SiPurezza:>98.0%(GC)Colore e forma:White to Light yellow powder to crystalPeso molecolare:102.252-[Methoxy(polyethyleneoxy)6-9propyl]trimethoxysilane
CAS:S25235 - 2-[Methoxy(polyethyleneoxy)6-9propyl]trimethoxysilane
Formula:(C2H4O2)nC7H18O3SiPurezza:90%Colore e forma:LiquidPeso molecolare:459-591Aminopropyl terminated polydimethylsiloxane cSt 4,000-6,000
CAS:DMS-A35 - Aminopropyl terminated polydimethylsiloxane cSt 4,000-6,000
Colore e forma:Liquid, ClearPeso molecolare:0.0Silanol terminated polydimethylsiloxanes cSt 50,000
CAS:DMS-S45 - Silanol terminated polydimethylsiloxanes cSt 50,000
Colore e forma:Liquid, ClearPeso molecolare:0.0Aminopropyl terminated polydimethylsiloxane cSt 100-120
CAS:DMS-A21 - Aminopropyl terminated polydimethylsiloxane cSt 100-120
Colore e forma:Liquid, ClearPeso molecolare:338.187722538Silanol terminated polydimethylsiloxane cSt 5000
CAS:DMS-S35 - Silanol terminated polydimethylsiloxane cSt 5000
Colore e forma:Liquid, ClearPeso molecolare:0.0Aminoproplyterminated polydimethylsiloxane cSt 20-30
CAS:DMS-A12 - Aminoproplyterminated polydimethylsiloxane cSt 20-30
Colore e forma:Liquid, ClearPeso molecolare:338.187722538MonoCarbinol terminated functional Polydimethylsiloxane - symmetric cSt 35-40
CAS:MCS-C13 - MonoCarbinol terminated functional Polydimethylsiloxane - symmetric cSt 35-40
Colore e forma:Liquid, Clear LiquidPeso molecolare:0.03-(Triallylsilyl)propyl Acrylate (stabilized with MEHQ)
CAS:Formula:C15H24O2SiPurezza:>92.0%(GC)Colore e forma:Light yellow to Brown clear liquidPeso molecolare:264.44(Trifluoromethyl)Trimethylsilane
CAS:Formula:C4H9F3SiPurezza:98%Colore e forma:LiquidPeso molecolare:142.1950n-DECYLTRIETHOXYSILANE
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
n-Decyltriethoxysilane; Triethoxysilyldecane
Trialkoxy silaneFormula:C16H36O3SiPurezza:97%Colore e forma:Straw LiquidPeso molecolare:304.54Ref: 3H-SID2665.0
Prodotto fuori produzione1,3,5,7,9-PENTAMETHYLCYCLOPENTASILOXANE, 90%
CAS:Siloxane-Based Silane Reducing Agent
Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.
1,3,5,7,9-Pentamethylcyclopentasiloxane; D'5; Methyl hydrogen cyclic pentamer; 2,4,6,8,10-Pentamethylcyclopentasiloxane
ΔHvap: 47.3 kJ/molContains other cyclic homologsExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Formula:C5H20O5Si5Purezza:90%Colore e forma:LiquidPeso molecolare:300.64Ref: 3H-SIP6718.0
Prodotto fuori produzioneISOTETRASILANE
CAS:Volatile Higher Silane
Volatile higher silanes are low temperature, high deposition rate precursors. By appropriate selection of precursor and deposition conditions, silicon deposition can be shifted from amorphous hydrogenated silicon toward microcrystalline silicon structures. As the number of silicon atoms increases beyond two, electrons are capable of sigma–sigma bond conjugation. The dissociative adsorption of two of the three hydrogen atoms on terminal silicon atoms has a lower energy barrier.
Isotetrasilane; (Trisilyl)silane; 2-Silyltrisilane
PYROPHORICAIR TRANSPORT FORBIDDEN?Hvap: 32.5 kJ/molPrecursor for low temp. epitaxy of doped crystalline siliconEmployed in low temperature CVD of amorphous siliconFormula:H10Si4Purezza:98%Colore e forma:Colourless LiquidPeso molecolare:122.42PHENETHYLTRIMETHOXYSILANE, tech
CAS:Aromatic Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Phenethyltrimethoxysilane; Phenylethyltrimethoxysilane; Trimethoxy(2-phenylethyl)silane
Contains α-, β-isomersComponent in optical coating resinsIn combination with TEOS,SIT7110.0, forms hybrid silicalite-1 molecular sievesFormula:C11H18O3SiPurezza:97%Colore e forma:Straw To Dark Amber LiquidPeso molecolare:226.35Ref: 3H-SIP6722.6
Prodotto fuori produzionePHENYLDICHLOROSILANE
CAS:Formula:C6H6Cl2SiPurezza:95%Colore e forma:Straw LiquidPeso molecolare:177.1Ref: 3H-SIP6725.0
Prodotto fuori produzioneN-(2-AMINOETHYL)-3-AMINOPROPYLTRIMETHOXYSILANE-PROPYLTRIMETHOXYSILANE, oligomeric co-hydrolysate
Diamine Functional Polymeric Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
N-(2-Aminoethyl)-3-aminopropyltrimethoxsilane-propyltrimethoxysilane,N-[3-(trimethoxysilyl)propyl]ethylenediamine-(trimethoxysilyl)propane, oligomeric co-hydrolysate
Cohydrolysate of SIA0591.1 and SIP6918.0Colore e forma:Straw LiquidPeso molecolare:222.36PHENYLMETHYLDICHLOROSILANE
CAS:Aromatic Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Arylsilane Cross-Coupling Agent
The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.
Phenylmethyldichlorosilane; Methylphenyldichlorosilane; Dichloromethylphenylsilane
Viscosity, 20 °C: 1.2 cStΔHvap: 48.1 kJ/molVapor pressure, 82.5 °C: 13 mmMonomer for high temperature siliconesReacts well under the influence of NaOH versus fluoride activation w/ aryl chlorides, bromides, and iodidesFormula:C7H8Cl2SiPurezza:97%Colore e forma:LiquidPeso molecolare:191.13Ref: 3H-SIP6738.0
Prodotto fuori produzioneSILICON DIOXIDE, amorphous GEL, 30% in isopropanol
CAS:Formula:SiO2Colore e forma:Translucent LiquidPeso molecolare:60.09Ref: 3H-SIS6963.0
Prodotto fuori produzionePHENYLMETHYLDIMETHOXYSILANE
CAS:Aromatic Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Phenylmethyldimethoxysilane; Methylphenyldimethoxysilane; Dimethoxymethylphenylsilane
Viscosity, 20 °C: 1.65 cStAdditive to coupling agent systems, increasing interface flexibility, UV stabilityDialkoxy silaneFormula:C9H14O2SiPurezza:97%Colore e forma:Straw LiquidPeso molecolare:182.29Ref: 3H-SIP6740.0
Prodotto fuori produzione3-ACRYLAMIDOPROPYLTRIS(TRIMETHYLSILOXY)SILANE, tech
CAS:Formula:C15H37NO4Si4Purezza:95%Colore e forma:SolidPeso molecolare:407.8N-(2-AMINOETHYL)-3-AMINOPROPYLTRIETHOXYSILANE, 92%
CAS:Diamino Functional Trialkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
N-(2-Aminoethyl)-3-aminopropyltriethoxysilane; N-[3-(Triethoxysilyl)propyl]-1,2-ethanediamine; N-[3-(Triethoxysilyl)propyl]-ethylenediamine
Primary amine with an internal secondary amine coupling agent for UV cure and epoxy systemsUsed in microparticle surface modificationSlower hydrolysis rate than SIA0591.0 and SIA0592.6Formula:C11H28N2O3SiPurezza:92%Colore e forma:Straw LiquidPeso molecolare:264.552-(2-PYRIDYLETHYL)TRIMETHOXYSILANE
CAS:2-(2-Pyridylethyl)trimethoxysilane, 2-(trimethoxysilylethyl)pyridine
Monoamino functional trialkoxy silaneUsed in microparticle surface modificationFormula:C10H17NO3SiPurezza:97%Colore e forma:Straw Amber LiquidPeso molecolare:227.33BIS(DIETHYLAMINO)SILANE
CAS:Formula:C8H22N2SiPurezza:97%Colore e forma:Straw LiquidPeso molecolare:174.16TRIETHOXYSILYLUNDECANAL, tech
CAS:Aldehyde Functional Trialkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
Triethoxysilylundecanal
Treated surface contact angle, water: 70°Long chain coupling agent for DNAProvides greater stability for coupled proteins than shorter alkyl homologsLong chain homolog of triethoxysilylbutyraldehyde (SIT8185.3)Formula:C17H36O4SiPurezza:techColore e forma:Straw LiquidPeso molecolare:332.56n-OCTADECYLDIMETHYLCHLOROSILANE, 70% in toluene
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
n-Octadecyldimethylchlorosilane; Dimethyl-n-octadecylchlorosilane; Chlorodimethyloctadecylsilane; Chlorodimethylsilyl-n-octadecane
Contains 5-10% C18 isomers70% in tolueneFormula:C20H43ClSiColore e forma:Straw Amber LiquidPeso molecolare:347.1Ref: 3H-SIO6615.2
Prodotto fuori produzione3-ISOCYANOTOPROPYLTRIMETHOXYSILANE, 92%
CAS:3-Isocyanotopropyltrimethoxysilane; trimethoxysilylpropylisocyanate
Isocyanate functional trialkoxy silaneViscosity: 1.4 cStCoupling agent for urethanes, polyols, and aminesComponent in hybrid organic/inorganic urethanesFormula:C7H15NO4SiPurezza:92%Colore e forma:Straw LiquidPeso molecolare:205.29Ref: 3H-SII6456.0
Prodotto fuori produzione(3-GLYCIDOXYPROPYL)DIMETHYLETHOXYSILANE
CAS:(3-Glycidoxypropyl)dimethylethoxysilane; 3-(2,3-epoxypropoxypropyl)dimethylethoxysilane
Epoxy functional monoalkoxy silaneUsed in microparticle surface modificationCoupling agent for UV cure and epoxy systemsEpoxy silane treated surfaces convert to hydrophilic-diols when exposed to moistureFormula:C10H22O3SiPurezza:97%Colore e forma:Straw LiquidPeso molecolare:218.37DODECAFLUORODEC-9-ENE-1-YLTRIMETHOXYSILANE
CAS:Olefin Functional Trialkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
9-Trimethoxysilyl-3,3,4,4,5,5,6,6,7,7,8,8-dodecafluorodecene; Dodecafluorodec-9-ene-1-yltrimethoxysilane
Forms self-assembled monolayers; reagent for immobilization of DNAUsed in microparticle surface modificationHalogenated alkyl hydrophobic linkerSimilar to discontinued product, SIH5919.0Formula:C13H16F12O3SiPurezza:97%Colore e forma:Straw LiquidPeso molecolare:476.33TRIS(TRIMETHYLSILOXY)CHLOROSILANE
CAS:Formula:C9H27ClO3Si4Purezza:97%Colore e forma:Straw LiquidPeso molecolare:331.11,3-DIVINYLTETRAMETHYLDISILOXANE
CAS:Alkenylsilane Cross-Coupling Agent
The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.
1,3-Divinyltetramethyldisiloxane; Diethenyltetramethyldisiloxane; Tetramethyldivinyldisiloxane; Divinyltetramethyldisiloxane
Silicone end-capperPotential vinyl nucleophile in cross-coupling reactionsModifier for vinyl addition silicone formulationsPotential vinyl donor in cross-coupling reactionsExtensive review of silicon based cross-coupling agents: Denmark, S. E. et al. "Organic Reactions, Volume 75" Denmark, S. E. ed., John Wiley and Sons, 233, 2011Formula:C8H18OSi2Purezza:97%Colore e forma:LiquidPeso molecolare:186.4Ref: 3H-SID4613.0
Prodotto fuori produzione1,3-BIS(3-METHACRYLOXYPROPYL)TETRAMETHYLDISILOXANE
CAS:Formula:C18H34O5Si2Purezza:92%Colore e forma:Straw LiquidPeso molecolare:386.64Ref: 3H-SIB1402.0
Prodotto fuori produzione(CYCLOHEXYLAMINOMETHYL)TRIETHOXYSILANE
CAS:(N-Cyclohexylaminomethyl)triethoxysilane; [(triethoxysilyl)methyl]aminocyclohexane
Secondary amino functional trialkoxy silaneInternal secondary amine coupling agent for UV cure and epoxy systemsUsed in microparticle surface modificationFormula:C13H29NO3SiPurezza:95%Colore e forma:Clear To Straw LiquidPeso molecolare:275.46STYRYLETHYLTRIS(TRIMETHYLSILOXY)SILANE, mixed isomers, tech
CAS:Formula:C19H38O3Si4Purezza:techColore e forma:Straw LiquidPeso molecolare:426.841,3-DIPHENYL-1,1,3,3-TETRAMETHYLDISILAZANE
CAS:Phenyl-Containing Blocking Agent
Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.
Aromatic Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Diphenyltetramethyldisilazane; N-(Dimethylphenylsilyl)-1,1-dimethyl-1-phenyl silane amine; N-(Dimethylphenylsilyl)-1,1-dimethyl-1-phenylsilylamine
Similar to SIP6728.0Emits ammonia upon reactionUsed for silylation of capillary columnsSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochureFormula:C16H23NSi2Purezza:97%Colore e forma:LiquidPeso molecolare:285.54Ref: 3H-SID4586.0
Prodotto fuori produzioneTRIETHYLSILANE, 98%
CAS:Tri-substituted Silane Reducing Agent
Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.
Triethylsilane; Triethylsilyl hydride; Triethylsilicon hydride
Viscosity: 4.9 cStDipole moment: 0.75 debyeSurface tension: 20.7 mN/mΔHform: -172 kJ/molΔHcomb: -5,324 kJ/molVapor pressure, 20 °: 40 mmSilylates tertiary alcohols in presence of tris(pentafluorophenyl)boraneSilylates arenes in presence of Ru catalyst and t-butylethyleneUsed in reductive cyclization of ynalsReadily converted directly to triethylsilyl carboxylatesUsed to reduce metal saltsEnhances deprotection of t-butoxycarbonyl-protected amines and tert-butyl estersUsed in the reductive amidation of oxazolidinones with amino acids to provide dipeptidesConverts aldehydes to symmetrical and unsymmetrical ethersUsed in the ‘in-situ’ preparation of diborane and haloboranesExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Formula:C6H16SiPurezza:98%Colore e forma:Colourless LiquidPeso molecolare:116.281,2-BIS(TRIMETHOXYSILYL)ETHANE, tech
CAS:Non-functional Alkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
Dipodal Silane
Dipodal silanes are a series of adhesion promoters that have intrinsic hydrolytic stabilities up to ~10,000 times greater than conventional silanes and are used in applications such as plastic optics, multilayer printed circuit boards and as adhesive primers for ferrous and nonferrous metals. They have the ability to form up to six bonds to a substrate compared to conventional silanes with the ability to form only three bonds to a substrate. Many conventional coupling agents are frequently used in combination with 10-40% of a non-functional dipodal silane, where the conventional coupling agent provides the appropriate functionality for the application, and the non-functional dipodal silane provides increased durability. Also known as bis-silanes additives enhance hydrolytic stability, which impacts on increased product shelf life, ensures better substrate bonding and also leads to improved mechanical properties in coatings as well as composite applications.
Alkyl Silane - Dipodal Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
1,2-Bis(trimethoxysilyl)ethane; 3,3,6,6-Tetramethoxy-2,7-dioxa-3,6-disilaoctane
Caution: Inhalation HazardAir Transport ForbiddenVapor pressure, 20 °C: 0.08 mmEmployed in fabrication of multilayer printed circuit boardsFormula:C8H22O6Si2Purezza:95%Colore e forma:LiquidPeso molecolare:270.43Ref: 3H-SIB1830.0
Prodotto fuori produzione(3-GLYCIDOXYPROPYL)BIS(TRIMETHYLSILOXY)METHYLSILANE
CAS:Formula:C13H32O4Si3Purezza:97% including isomersColore e forma:Straw LiquidPeso molecolare:336.65TRIETHOXYSILYL MODIFIED POLY-1,2-BUTADIENE, 50% in volatile silicone
CAS:Triethoxysilyl modified poly-1,2-butadiene; vinyltriethoxysilane-1,2-butadiene copolymer; triethoxysilyl modified poly(1,2-butadiene)
Multi-functional polymeric trialkoxy silane50% in volatile silicone (decamethylcyclopentasiloxane)Hydrophobic modified polybutadieneViscosity: 600-1200 cStPrimer coating for silicone rubbersColore e forma:Pale Yellow Amber LiquidPeso molecolare:3500-4500PENTAVINYLPENTAMETHYLCYCLOPENTASILOXANE, 92%
CAS:Formula:C15H30O5Si5Purezza:92%Colore e forma:LiquidPeso molecolare:430.82VINYLTRICHLOROSILANE
CAS:Formula:C2H3Cl3SiPurezza:97%Colore e forma:Straw Amber LiquidPeso molecolare:161.49Ref: 3H-SIV9110.0
Prodotto fuori produzione2,2,4-TRIMETHYL-1-OXA-4-AZA-2-SILACYCLOHEXANE
CAS:Formula:C6H15NOSiColore e forma:LiquidPeso molecolare:145.28SIVATE A610: ACTIVATED AMINE FUNCTIONAL SILANE
CAS:SIVATE A610 (Activated AMEO)
Activated silane blend of aminopropyltriethoxysilane (SIA0610.0) and (1-(3-triethoxysilyl)propyl)-2,2-diethoxy-1-aza-silacyclopentane (SIT8187.2)Reacts at high speed (seconds compared to hours)Does not require moisture or hydrolysis to initiate surface reactivityReacts with a greater variety of substratesPrimer for high speed UV cure systems (e.g. acrylated urethanes)
Activated Amine Functional Trialkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.Formula:C9H23NO3SiColore e forma:Colourless To Straw LiquidPeso molecolare:221.37Ref: 3H-SIA0610.A1
Prodotto fuori produzione1,5-DICHLOROHEXAMETHYLTRISILOXANE, tech
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
1,5-Dichlorohexamethyltrisiloxane; Hexamethyldichlorotrisiloxane; 1,5-Dichloro-1,1,3,3,5,5-hexamethyltrisiloxane
ΔHvap: 47.7 kJ/molVapor pressure, 50 °C: 1 mmFormula:C6H18Cl2O2Si3Purezza:92%Colore e forma:Straw Amber LiquidPeso molecolare:277.37PHENYLTRIS(DIMETHYLSILOXY)SILANE
CAS:Siloxane-Based Silane Reducing Agent
Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.
Phenyltris(dimethylsiloxy)silane; Phenyl hydride cross-linker; 3-[(Dimethylsilyl)oxy]-1,1,5,5-tetramethyl-3-phenyltrisiloxane
High molecular weight silane reducing agentCrosslinker for vinylphenylsilicone 2-component elastomersExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Formula:C12H26O3Si4Purezza:97%Colore e forma:LiquidPeso molecolare:330.68Ref: 3H-SIP6826.0
Prodotto fuori produzioneOCTAPHENYLCYCLOTETRASILOXANE, 95%
CAS:Formula:C48H40O4Si4Colore e forma:White SolidPeso molecolare:793.18Ref: 3H-SIO6705.0
Prodotto fuori produzione



