
Silani
Sottocategorie di "Silani"
Trovati 1234 prodotti di "Silani"
3-[METHOXY(POLYETHYLENEOXY)6-9]PROPYLHEPTAMETHYLTRISILOXANE, tech
CAS:PEGylated Silicone, Trisiloxane (559-691 g/mol)
PEO, Trisiloxane termination utilized for hydrophilic surface modificationPEGylation reagent"Super-wetter", surface tension of 0.1% aqueous solution: 21-22 mN/mViscosity: 22 cStFormula:CH3O(CH2CH2O)6-9(CH2)3(CH3)[OSi(CH3)3]2SiColore e forma:Pale Yellow LiquidPeso molecolare:559-691N,O-BIS(TRIMETHYLSILYL)ACETAMIDE
CAS:Trimethylsilyl Blocking Agent
Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.
Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Bis(Trimethylsilyl)acetamide; N,O-Bis(trimethylsilyl)acetamide; Trimethylsilyl-N-Trimethylsilylacetamidate; BSA
More reactive than SIH6110.0Releases neutral acetamide upon reactionBoth silyl groups usedUsed for silylation in analytical applicationsReactions catalyzed by acidForms enol silyl ethers in ionic liquidsNafion SAC-13 has been shown to be a recyclable catalyst for the trimethylsilylation of primary, secondary, and tertiary alcohols in excellent yields and short reaction timesSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochureFormula:C8H21NOSi2Purezza:95%Colore e forma:Straw LiquidPeso molecolare:203.43DIMETHYLCHLOROSILANE, 98%
CAS:Tri-substituted Silane Reducing Agent
Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.
Dimethylchlorosilane; Chlorodimethylsilane; Dimethylsilyl chloride
ΔHvap: 26.2 kJ/molSurface tension: 17.1 mN/mSpecific heat: 1.13 J/g/°CThermal conductivity: 0.116 W/mKCritical temperature: 202 °CUndergoes hydrosilylation reactionsEnantioselectively converts ?-hydroxyketones to 1,2-diolsWill form high-boiling polymeric by-products with aqueous work-upExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Formula:C2H7ClSiPurezza:98%Colore e forma:Straw LiquidPeso molecolare:94.62BIS[(p-DIMETHYLSILYL)PHENYL]ETHER, 96%
CAS:Formula:C16H22OSi2Purezza:96%Colore e forma:LiquidPeso molecolare:286.52SIVATE E610: ENHANCED AMINE FUNCTIONAL SILANE
CAS:SIVATE E610 (Enhanced AMEO)
Enhanced silane blend of aminopropyltriethoxysilane (SIA0610.0), 1,2-bis(triethoxysilyl)ethane (SIB1817.0) and bis(3-triethoxysilylpropyl)amine (SIB1824.5)Performance extended to non-siliceous surfacesImproved mechanical properties and corrosion resistance of metal substratesSuperior film forming properties in primer applicationsHigher bond strength in aggressive aqueous conditionsImparts composites and primers with long-term durability in a wide range of environmentsApplications include: adhesives for metallic and silicon-based substrates, coupling agent for thermoset and thermoplastic composites, functional micro-particles for adhesives and sealants
Enhanced Amine Functional Trialkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.Formula:C9H23NO3SiColore e forma:Colourless To Straw LiquidPeso molecolare:221.37(3,3,3-TRIFLUOROPROPYL)TRIMETHOXYSILANE, 98%
CAS:Formula:C6H13F3O3SiPurezza:98%Colore e forma:Straw LiquidPeso molecolare:218.253-ISOCYANATOPROPYLTRIETHOXYSILANE, 95%
CAS:3-Isocyanatopropyltriethoxysilane; triethoxysilylpropylisocyanate
Isocyanate functional trialkoxy silaneComponent in hybrid organic/inorganic urethanesCoupling agent for urethanes, polyols, and aminesFormula:C10H21NO4SiPurezza:94.50%Colore e forma:Straw LiquidPeso molecolare:247.37Ref: 3H-SII6455.0
2kgPrezzo su richiesta100gPrezzo su richiesta17kgPrezzo su richiesta900gPrezzo su richiesta180kgPrezzo su richiestaPHENETHYLTRICHLOROSILANE
CAS:Aromatic Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Phenethyltrichlorosilane; 2-(Trichlorosilylethyl) benzene; Trichloro(2-phenylethyl)silane
Contains α-, β-isomersTreated surface contact angle, water: 88°Formula:C8H9Cl3SiPurezza:97%Colore e forma:Pale Yellow LiquidPeso molecolare:239.6DIMETHYLETHOXYSILANE
CAS:Tri-substituted Silane Reducing Agent
Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.
Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Dimethylethoxysilane; Ethoxydimethylsilane
Vapor pressure, 20 °C: 281 mmUndergoes hydrosilylation reactionsWaterproofing agent for space shuttle thermal tilesWill form high-boiling polymeric by-products with aqueous work-upExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Formula:C4H12OSiPurezza:97%Colore e forma:LiquidPeso molecolare:104.22TRIMETHYLCHLOROSILANE, 99+%
CAS:Formula:C3H9ClSiPurezza:99%Colore e forma:Straw LiquidPeso molecolare:108.64Ref: 3H-SIT8510.1
3kgPrezzo su richiesta15kgPrezzo su richiesta750gPrezzo su richiesta170kgPrezzo su richiesta1,3-BIS(3-AMINOPROPYL)TETRAMETHYLDISILOXANE
CAS:Formula:C10H28N2OSi2Purezza:97%Colore e forma:Straw LiquidPeso molecolare:248.52DODECYLMETHYLDICHLOROSILANE
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Dodecylmethyldichlorosilane; Dichlorododecylmethylsilane; MethyldodecyldichlorosilaneFormula:C13H28Cl2SiPurezza:97%Colore e forma:Straw LiquidPeso molecolare:283.36UREIDOPROPYLTRIMETHOXYSILANE
CAS:Ureidopropyltrimethoxysilane, (3-trimethoxysilyl)propylurea
Specialty amine functional trialkoxy silaneComponent in primers for tin alloysAdhesion promoter for foundry resinsFormula:C7H18N2O4SiColore e forma:Straw Amber LiquidPeso molecolare:222.32Ref: 3H-SIU9058.0
2kgPrezzo su richiesta100gPrezzo su richiesta20kgPrezzo su richiesta225kgPrezzo su richiestaAMINOPROPYL/VINYLSILSESQUIOXANE IN AQUEOUS SOLUTION
CAS:aminopropyl/vinyl/silsesquioxane, (60-65% aminopropylsilsesquioxane)-(35-40% vinyl-silsesquioxane) copolymer 25-28% in water; trihydroxysilylpropylamine-vinylsilanetriol condensate; aminopropylsilsesquioxane vinylsilsequioxane copolymer oligomer
Water-borne amino/vinyl alkyl silsesquioxane oligomersAdditives for acrylic latex sealantsLow VOC coupling agent for siliceous surfacesOrganic and silanol functionalityAmphotericPrimers for metalsViscosity: 3-10 cStMole % functional group: 60-65pH: 10-11Internal hydrogen bonding stabilizes solutionColore e forma:Straw LiquidPeso molecolare:250-5001,1,3,3-TETRAMETHYLDISILOXANE, 98%
CAS:Alkenylsilane Cross-Coupling Agent
The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.
ALD Material
Atomic layer deposition (ALD) is a chemically self-limiting deposition technique that is based on the sequential use of a gaseous chemical process. A thin film (as fine as -0.1 Å per cycle) results from repeating the deposition sequence as many times as needed to reach a certain thickness. The major characteristic of the films is the resulting conformality and the controlled deposition manner. Precursor selection is key in ALD processes, namely finding molecules which will have enough reactivity to produce the desired films yet are stable enough to be handled and safely delivered to the reaction chamber.
Siloxane-Based Silane Reducing Agent
Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.
1,1,3,3-Tetramethyldisiloxane; 1,1-Dihydro-1,1,3,3-tetramethyldisiloxane; TMDO; TMDS
Viscosity, 20 °C: 0.56 cStΔHcomb: 4,383 kJ/molΔHvap: 30.3 kJ/molVapor pressure, 27 °C: 194.8 mmReduces aromatic aldehydes to benzyl halidesEmployed in reductive halogenation of aldehydes and epoxidesUsed to link ferrocenylsilane, polyolefin block copolymers into stable cylindrical formsEndcapper for polymerization of hydride terminated siliconesOrganic reducing agentEmployed in high-yield reduction of amides to amines in the presence of other reducible groupsReduces anisoles to arenesHydrosilylates terminal alkynes to form alkenylsilanes capable of cross-coupling with aryl and vinyl halidesExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Extensive review of silicon based cross-coupling agents: Denmark, S. E. et al. "Organic Reactions, Volume 75" Denmark, S. E. ed., John Wiley and Sons, 233, 2011Formula:C4H14OSi2Purezza:98%Colore e forma:LiquidPeso molecolare:134.22Ref: 3H-SIT7546.0
14kgPrezzo su richiesta250gPrezzo su richiesta1.5kgPrezzo su richiesta145kgPrezzo su richiestaVINYLTRIS(METHYLETHYLKETOXIMINO)SILANE, tech
CAS:Olefin Functional Trialkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
Vinyltris(methylethylketoximino)silane; Tris(methylethylketoximino)vinylsilane; Tri(methylethylketoximino)silylethylene
Neutral cross-linker/coupling agent for condensation cure siliconesByproduct: methylethylketoximeCopolymerizes with ethylene to form moisture crosslinkable polyethyleneFormula:C14H27N3O3SiPurezza:92%Colore e forma:Straw LiquidPeso molecolare:313.47TRIS(DIMETHYLAMINO)METHYLSILANE
CAS:Formula:C7H21N3SiPurezza:97%Colore e forma:Straw LiquidPeso molecolare:175.35(3-GLYCIDOXYPROPYL)METHYLDIETHOXYSILANE
CAS:(3-glycidoxypropyl)methyldiethoxysilane; 3-(2,3-epoxypropoxypropyl)methyldiethoxysilane; [3-(2,3- epoxypropoxy)propyl]diethoxymethylsilane; 3- (methyldiethoxysilyl)propyl glycidyl ether
Epoxy functional dialkoxy silaneViscosity: 3.0 cStEmployed in scratch resistant coatings for eye glassesCoupling agent for latex systems with reduced tendancy to gel compared to SIG5840.0Coupling agent for UV cure and epoxy systemsEpoxy silane treated surfaces convert to hydrophilic-diols when exposed to moistureFormula:C11H24O4SiPurezza:97%Colore e forma:Straw LiquidPeso molecolare:248.393-CYANOPROPYLTRICHLOROSILANE
CAS:Formula:C4H6Cl3NSiPurezza:97%Colore e forma:Straw LiquidPeso molecolare:202.54
