CAS 16068-37-4
:Bis(triethoxysilyl)ethane
Description:
Bis(triethoxysilyl)ethane, with the CAS number 16068-37-4, is an organosilicon compound characterized by its dual triethoxysilyl functional groups attached to an ethane backbone. This structure imparts unique properties, making it a versatile silane coupling agent. It is typically a colorless to pale yellow liquid, exhibiting good solubility in organic solvents while being reactive towards moisture, which allows it to form siloxane bonds upon hydrolysis. This reactivity enables it to effectively bond organic materials to inorganic substrates, enhancing adhesion and improving the mechanical properties of composite materials. Additionally, it can act as a crosslinking agent in polymer formulations, contributing to improved durability and resistance to environmental factors. Its applications span various fields, including coatings, adhesives, sealants, and surface treatments, particularly in enhancing the performance of glass, ceramics, and metals. Safety considerations include handling it in well-ventilated areas and using appropriate personal protective equipment, as it can release ethanol upon hydrolysis, which may pose health risks.
Formula:C14H34O6Si2
InChI:InChI=1S/C14H34O6Si2/c1-7-15-21(16-8-2,17-9-3)13-14-22(18-10-4,19-11-5)20-12-6/h7-14H2,1-6H3
InChI key:InChIKey=IZRJPHXTEXTLHY-UHFFFAOYSA-N
SMILES:[Si](CC[Si](OCC)(OCC)OCC)(OCC)(OCC)OCC
Synonyms:- 1,1,1,4,4,4-Hexaethoxy-1,4-disilabutane
- 1,2-(Triethoxysilyl)ethane
- 1,2-Bis(3-(triethoxy)silylpropyl)ethane
- 1,2-Bis(3-ethoxysilyl)ethane
- 1,2-Bis(triethoxysilyl)ethane
- 1,2-Di(triethoxylsilyl)ethane
- 1,2-Di(triethoxysilyl)ethane
- 3,8-Dioxa-4,7-disiladecane, 4,4,7,7-tetraethoxy-
- 4,4,7,7-Tetraethoxy-3,8-dioxa-4,7-disiladecane
- Btese
- Dynasylan BTSE
- Ethylenebis(triethoxysilane)
- Kbe 3026
- Kbm 6026
- Lmd 26E
- Sib 1817
- Sib 1817.0
- Silquest Y 9805
- Vernetzer ET 13
- [(Triethoxysilyl)ethyl]triethoxysilane
- See more synonyms
Sort by
Purity (%)
0
100
|
0
|
50
|
90
|
95
|
100
Found 6 products.
1,2-Bis(triethoxysilyl)ethane
CAS:Formula:C14H34O6Si2Purity:>95.0%(GC)Color and Shape:Colorless to Almost colorless clear liquidMolecular weight:354.591,2-Bis(triethoxysilyl)ethane, 95%
CAS:<p>1,2-Bis(triethoxysilyl)ethane is used as coating auxiliary agents, leather auxiliary agents, plastic auxiliary agents, surfactants and textile auxiliary agents. It is used to prepare mesoporous organosilica materials. This Thermo Scientific Chemicals brand product was originally part of the Alfa Aes</p>Formula:C14H34O6Si2Purity:95%Molecular weight:354.59ETHYLENEBIS(TRIETHOXYSILANE)
CAS:Formula:C14H34O6Si2Purity:98%Color and Shape:LiquidMolecular weight:354.58721,2-Bis(Triethoxysilyl)Ethane
CAS:1,2-Bis(Triethoxysilyl)EthanePurity:95%Molecular weight:354.59g/mol1,2-BIS(TRIETHOXYSILYL)ETHANE
CAS:<p>Alkyl Silane - Dipodal Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Non Functional Alkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Dipodal Silane<br>Dipodal silanes are a series of adhesion promoters that have intrinsic hydrolytic stabilities up to ~10,000 times greater than conventional silanes and are used in applications such as plastic optics, multilayer printed circuit boards and as adhesive primers for ferrous and nonferrous metals. They have the ability to form up to six bonds to a substrate compared to conventional silanes with the ability to form only three bonds to a substrate. Many conventional coupling agents are frequently used in combination with 10-40% of a non-functional dipodal silane, where the conventional coupling agent provides the appropriate functionality for the application, and the non-functional dipodal silane provides increased durability. Also known as bis-silanes additives enhance hydrolytic stability, which impacts on increased product shelf life, ensures better substrate bonding and also leads to improved mechanical properties in coatings as well as composite applications.<br>1,2-Bis(triethoxysilyl)ethane (Hexaethoxydisilethylene, BSE)<br>ΔHvap: 101.5 kJ/molVapor pressure, 150°: 10mmAdditive to silane coupling agent formulations that enhance hydrolytic stabilityEmployed in corrosion resistant coating and primers for steel and aluminumComponent in evaporation-induced self-assembly of mesoporous structuresForms mesoporous molecular sieves that can be further functionalizedSolg-gels of α,ω-bis(trimethoxysilyl)alkanes reportedHydrolysis kinetics studied7Advanced silane in SIVATE™ E610Used as an adhesion promoter in Bird-deterrent Glass Coatings<br></p>Formula:C14H34O6Si2Purity:97%Color and Shape:LiquidMolecular weight:354.591,2-Bis(triethoxysilyl)ethane(Hexaethoxydisilethylene)
CAS:<p>S02108 - 1,2-Bis(triethoxysilyl)ethane(Hexaethoxydisilethylene)</p>Formula:C14H34O6Si2Purity:95%Color and Shape:Liquid, Colourless liquidMolecular weight:354.59






