CymitQuimica logo
Silanes

Silanes

Silanes are silicon-based compounds with one or more organic groups attached to a silicon atom. They serve as crucial building blocks in organic and inorganic synthesis, especially in surface modification, adhesion promotion, and the production of coatings and sealants. Silanes are widely used in the semiconductor industry, glass treatment, and as crosslinking agents in polymer chemistry. At CymitQuimica, we offer a diverse range of silanes designed for your research and industrial applications.

Subcategories of "Silanes"

Found 1235 products of "Silanes"

Sort by

Purity (%)
0
100
|
0
|
50
|
90
|
95
|
100
products per page.
  • UREIDOPROPYLTRIMETHOXYSILANE

    CAS:
    <p>Ureidopropyltrimethoxysilane, (3-trimethoxysilyl)propylurea<br>Specialty amine functional trialkoxy silaneComponent in primers for tin alloysAdhesion promoter for foundry resins<br></p>
    Formula:C7H18N2O4Si
    Color and Shape:Straw Amber Liquid
    Molecular weight:222.32

    Ref: 3H-SIU9058.0

    2kg
    To inquire
    100g
    To inquire
    20kg
    To inquire
    225kg
    To inquire
  • 1,1,3,3-TETRAMETHYLDISILOXANE, 98%

    CAS:
    <p>Alkenylsilane Cross-Coupling Agent<br>The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.<br>ALD Material<br>Atomic layer deposition (ALD) is a chemically self-limiting deposition technique that is based on the sequential use of a gaseous chemical process. A thin film (as fine as -0.1 Å per cycle) results from repeating the deposition sequence as many times as needed to reach a certain thickness. The major characteristic of the films is the resulting conformality and the controlled deposition manner. Precursor selection is key in ALD processes, namely finding molecules which will have enough reactivity to produce the desired films yet are stable enough to be handled and safely delivered to the reaction chamber.<br>Siloxane-Based Silane Reducing Agent<br>Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.<br>1,1,3,3-Tetramethyldisiloxane; 1,1-Dihydro-1,1,3,3-tetramethyldisiloxane; TMDO; TMDS<br>Viscosity, 20 °C: 0.56 cStΔHcomb: 4,383 kJ/molΔHvap: 30.3 kJ/molVapor pressure, 27 °C: 194.8 mmReduces aromatic aldehydes to benzyl halidesEmployed in reductive halogenation of aldehydes and epoxidesUsed to link ferrocenylsilane, polyolefin block copolymers into stable cylindrical formsEndcapper for polymerization of hydride terminated siliconesOrganic reducing agentEmployed in high-yield reduction of amides to amines in the presence of other reducible groupsReduces anisoles to arenesHydrosilylates terminal alkynes to form alkenylsilanes capable of cross-coupling with aryl and vinyl halidesExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Extensive review of silicon based cross-coupling agents: Denmark, S. E. et al. "Organic Reactions, Volume 75" Denmark, S. E. ed., John Wiley and Sons, 233, 2011<br></p>
    Formula:C4H14OSi2
    Purity:98%
    Color and Shape:Liquid
    Molecular weight:134.22

    Ref: 3H-SIT7546.0

    14kg
    To inquire
    250g
    To inquire
    1.5kg
    To inquire
    145kg
    To inquire
  • VINYLTRIS(METHYLETHYLKETOXIMINO)SILANE, tech

    CAS:
    <p>Olefin Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Vinyltris(methylethylketoximino)silane; Tris(methylethylketoximino)vinylsilane; Tri(methylethylketoximino)silylethylene<br>Neutral cross-linker/coupling agent for condensation cure siliconesByproduct: methylethylketoximeCopolymerizes with ethylene to form moisture crosslinkable polyethylene<br></p>
    Formula:C14H27N3O3Si
    Purity:92%
    Color and Shape:Straw Liquid
    Molecular weight:313.47

    Ref: 3H-SIV9280.0

    16kg
    To inquire
    180kg
    To inquire
  • TRIS(DIMETHYLAMINO)METHYLSILANE

    CAS:
    Formula:C7H21N3Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:175.35

    Ref: 3H-SIT8712.0

    10g
    To inquire
  • (3-GLYCIDOXYPROPYL)METHYLDIETHOXYSILANE

    CAS:
    <p>(3-glycidoxypropyl)methyldiethoxysilane; 3-(2,3-epoxypropoxypropyl)methyldiethoxysilane; [3-(2,3- epoxypropoxy)propyl]diethoxymethylsilane; 3- (methyldiethoxysilyl)propyl glycidyl ether<br>Epoxy functional dialkoxy silaneViscosity: 3.0 cStEmployed in scratch resistant coatings for eye glassesCoupling agent for latex systems with reduced tendancy to gel compared to SIG5840.0Coupling agent for UV cure and epoxy systemsEpoxy silane treated surfaces convert to hydrophilic-diols when exposed to moisture<br></p>
    Formula:C11H24O4Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:248.39

    Ref: 3H-SIG5832.0

    2kg
    To inquire
    16kg
    To inquire
    180kg
    To inquire
  • 3-CYANOPROPYLTRICHLOROSILANE

    CAS:
    Formula:C4H6Cl3NSi
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:202.54

    Ref: 3H-SIC2454.0

    18kg
    To inquire
    750g
    To inquire
    2.5kg
    To inquire
  • n-OCTYLTRIETHOXYSILANE, 98%

    CAS:
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Octyltriethoxysilane; Triethoxysilyloctane<br>Viscosity: 1.9 cStVapor pressure, 75 °C: 1 mmWidely used in architectural hydrophobationSurface treatment for pigments in cosmetic vehicles and compositesMay be formulated to stable water emulsionsSuppresses nucleation behavior in ZnO-polylactic acid compositesTrialkoxy silane<br></p>
    Formula:C14H32O3Si
    Purity:97.5%
    Color and Shape:Straw Liquid
    Molecular weight:276.48

    Ref: 3H-SIO6715.0

    2kg
    To inquire
    50g
    To inquire
    15kg
    To inquire
    175kg
    To inquire
  • 3-[METHOXY(POLYETHYLENEOXY)6-9]PROPYLTRIS(DIMETHYLAMINO)SILANE, tech


    <p>Tipped PEG Silane (500-855 g/mol)<br>PEO, Tris(dimethylamino)silane termination utilized for hydrophilic surface modificationPEGylation reagentFor MOCVD of hydrophilic films<br></p>
    Formula:CH3O(CH2CH2O)6-9(CH2)3Si[N(CH3)2]3
    Color and Shape:Straw Liquid
    Molecular weight:500-855

    Ref: 3H-SIM6492.77

    10g
    To inquire
  • METHYLTRIETHOXYSILANE

    CAS:
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Methyltriethoxysilane; Triethoxymethylsilane; Methyltriethyloxysilane<br>Viscosity: 0.6 cStDipole moment: 1.72 debyeVapor pressure, 25 °: 6 mmLow cost hydrophobic surface treatmentAlkoxy crosslinker for condensation cure siliconesTrialkoxy silane<br></p>
    Formula:C7H18O3Si
    Purity:97%
    Color and Shape:Liquid
    Molecular weight:178.3

    Ref: 3H-SIM6555.0

    2kg
    To inquire
    15kg
    To inquire
    180kg
    To inquire
  • (3-GLYCIDOXYPROPYL)PENTAMETHYLDISILOXANE

    CAS:
    Formula:C11H26O3Si2
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:262.5

    Ref: 3H-SIG5838.0

    50g
    To inquire
  • DIMETHYLDICHLOROSILANE, 99+%

    CAS:
    <p>Bridging Silicon-Based Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Dimethyldichlorosilane; Dichlorodimethylsilane; DMS<br>AIR TRANSPORT FORBIDDENRedistilledViscosity: 0.47 cStVapor pressure, 17 °C: 100 mmSpecific heat: 0.92 J/g/°ΔHcomb: -2,055 kJ/molΔHvap: 33.5 kJ/molSurface tension: 20.1 mN/mCoefficient of thermal expansion: 1.3 x 10-3Critical temperature: 247.2 °CCritical pressure: 34.4 atmFundamental monomer for siliconesEmployed in the tethering of two olefins for the cross metathesis-coupling step in the synthesis of Attenol AAids in the intramolecular Pinacol reactionReacts with alcohols, diols, and hydroxy carboxylic acidsEmployed as a protecting group/template in C-glycoside synthesisAvailable in a lower purity as SID4120.0Summary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formula:C2H6Cl2Si
    Purity:99+%
    Color and Shape:Straw Liquid
    Molecular weight:129.06

    Ref: 3H-SID4120.1

    18kg
    To inquire
  • (3,3,3-TRIFLUOROPROPYL)METHYLCYCLOTRISILOXANE

    CAS:
    Formula:C12H21F9O3Si3
    Purity:97%
    Color and Shape:White Solid
    Molecular weight:468.55

    Ref: 3H-SIT8366.0

    25g
    To inquire
    20kg
    To inquire
    225kg
    To inquire
  • (3-PHENYLPROPYL)DIMETHYLCHLOROSILANE

    CAS:
    <p>Aromatic Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>(3-Phenylpropyl)dimethylchlorosilane; 3-(Chlorodimethylsilylpropyl)benzene; Chlorodimethyl(3-phenylpropyl)silane<br></p>
    Formula:C11H17ClSi
    Purity:97%
    Color and Shape:Pale Yellow Liquid
    Molecular weight:212.78

    Ref: 3H-SIP6743.0

    50g
    To inquire
  • ISOOCTYLTRIETHOXYSILANE

    CAS:
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Isooctyltriethoxysilane; Triethoxysilyl-2,4,4-trimethypentane<br>Viscosity: 2.1 cStVapor pressure, 112 °C: 10mmArchitectural water-repellentWater scavenger for sealed lubricant systemsTrialkoxy silane<br></p>
    Formula:C14H32O3Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:276.48

    Ref: 3H-SII6457.5

    2kg
    To inquire
    15kg
    To inquire
    175kg
    To inquire
  • BIS[3-(TRIETHOXYSILYL)PROPYL]TETRASULFIDE, tech

    CAS:
    <p>bis[3-(triethoxysilyl)propyl]tetrasulfide; bis(triethoxysilylpropyl)tetrasulfane; TESPT<br>Sulfur functional dipodal silaneContains distribution of S2 - S10 species; average 3.8Viscosity: 11 cStAdhesion promoter for precious metalsCoupling agent/vulcanizing agent for "green" tiresAdhesion promoter for physical vapor deposition (PVD) copper on parylene<br></p>
    Formula:C18H42O6S4Si2
    Purity:95%
    Color and Shape:Pale Yellow Amber Liquid
    Molecular weight:538.94

    Ref: 3H-SIB1825.0

    2kg
    To inquire
    18kg
    To inquire
  • 1,3-BIS(HYDROXYPROPYL)TETRAMETHYLDISILOXANE, tech 95

    CAS:
    Formula:C10H26O3Si2
    Purity:95%
    Color and Shape:Straw Liquid
    Molecular weight:250.48

    Ref: 3H-SIB1145.0

    25g
    To inquire
  • 5-HEXENYLTRIMETHOXYSILANE, tech

    CAS:
    <p>Olefin Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>5-Hexenyltrimethoxysilane; Trimethoxysilylhexene<br>Adhesion promoter for Pt-cure siliconesUsed in microparticle surface modification<br></p>
    Formula:C9H20O3Si
    Purity:tech
    Color and Shape:Straw Liquid
    Molecular weight:204.34

    Ref: 3H-SIH6164.3

    100g
    To inquire
  • (N,N-DIETHYL-3-AMINOPROPYL)TRIMETHOXYSILANE

    CAS:
    <p>(N,N-Diethyl-3-aminopropyl)trimethoxysilane; N-(3-trimethoxysilyl)propyl-N,N-diethylamine, N,N-diethyl-3-(trimethoxysilyl)propylamine<br>Tertiary amino functional silanesProvides silica-supported catalyst for 1,4-addition reactionsUsed together w/ SIA0591.0 to anchor PdCl2 catalyst to silica for acceleration of the Tsuji-Trost reaction in the allylation of nucleophiles<br></p>
    Formula:C10H25NO3Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:235.4

    Ref: 3H-SID3396.0

    2kg
    To inquire
  • (3-(N-ETHYLAMINO)ISOBUTYL)TRIMETHOXYSILANE

    CAS:
    <p>(3-(N-Ethylamino)isobutyl)trimethoxysilane; 3-(trimethoxysilyl)-N-ethyl-2-methyl-1-propanamine<br>Secondary amino functional trialkoxy silaneReacts with isocyanate resins (urethanes) to form moisture cureable systemsPrimary amine coupling agent for UV cure and epoxy systemsUsed in microparticle surface modificationAdvanced cyclic analog available: SIE4891.0<br></p>
    Formula:C9H23NO3Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:221.37

    Ref: 3H-SIE4886.0

    2kg
    To inquire
    17kg
    To inquire
    180kg
    To inquire
  • BIS(3-TRIMETHOXYSILYLPROPYL)AMINE, 96%

    CAS:
    <p>Amine Functional Alkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Dipodal Silane<br>Dipodal silanes are a series of adhesion promoters that have intrinsic hydrolytic stabilities up to ~10,000 times greater than conventional silanes and are used in applications such as plastic optics, multilayer printed circuit boards and as adhesive primers for ferrous and nonferrous metals. They have the ability to form up to six bonds to a substrate compared to conventional silanes with the ability to form only three bonds to a substrate. Many conventional coupling agents are frequently used in combination with 10-40% of a non-functional dipodal silane, where the conventional coupling agent provides the appropriate functionality for the application, and the non-functional dipodal silane provides increased durability. Also known as bis-silanes additives enhance hydrolytic stability, which impacts on increased product shelf life, ensures better substrate bonding and also leads to improved mechanical properties in coatings as well as composite applications.<br>Bis-(3-trimethoxysilylpropyl)amine<br>Secondary amine allows more control of reactivity with isocyanatesEmployed in optical fiber coatingsUsed in combination with silane, (3-Acryloxypropyl)trimethoxysilane, (SIA0200.0), to increase strength and hydrolytic stability of dental compositesDipodal analog of AMEO (SIA0611.0 )<br></p>
    Formula:C12H31NO6Si2
    Purity:96%
    Color and Shape:Straw Liquid
    Molecular weight:341.56

    Ref: 3H-SIB1833.0

    25g
    To inquire
    2kg
    To inquire
    18kg
    To inquire
    180kg
    To inquire