
Silanes
Silanes are silicon-based compounds with one or more organic groups attached to a silicon atom. They serve as crucial building blocks in organic and inorganic synthesis, especially in surface modification, adhesion promotion, and the production of coatings and sealants. Silanes are widely used in the semiconductor industry, glass treatment, and as crosslinking agents in polymer chemistry. At CymitQuimica, we offer a diverse range of silanes designed for your research and industrial applications.
Subcategories of "Silanes"
Found 1235 products of "Silanes"
Sort by
Purity (%)
0
100
|
0
|
50
|
90
|
95
|
100
3-CYANOPROPYLDIISOPROPYLCHLOROSILANE
CAS:Formula:C10H20ClNSiPurity:97%Color and Shape:Straw LiquidMolecular weight:217.823-MERCAPTOPROPYLTRIMETHOXYSILANE
CAS:<p>3-Mercaptopropyltrimethoxysilane; 3-(trimethoxysilyl)propanethiol; 3-trimethoxysilyl)propylmercaptan<br>Sulfur functional trialkoxy silaneγc of treated surfaces: 41 mN/mViscosity: 2 cStSpecific wetting surface: 348 m2/gCoupling agent for ethylene propylene diene monomer, EPDM, and mechanical rubber applicationsAdhesion promoter for polysulfide adhesivesFor enzyme immobilizationTreatment of mesoporous silica yields highly efficient heavy metal scavengerCouples fluorescent biological tags to semiconductor CdS nanoparticlesModified mesoporous silica supports Pd in coupling reactionsUsed to make thiol-organosilica nanoparticlesForms modified glass and silica surfaces suitable for successive ionic layer adsorption and reaction (SILAR) fabrication of CdS thin films<br></p>Formula:C6H16O3SSiPurity:97%Color and Shape:Straw LiquidMolecular weight:196.341,3-BIS(3-METHACRYLOXYPROPYL)TETRAKIS(TRIMETHYLSILOXY)DISILOXANE, tech
CAS:Formula:C26H58O9Si6Purity:87%Color and Shape:Straw LiquidMolecular weight:683.25HEXAMETHYLCYCLOTRISILOXANE
CAS:Formula:C6H18O3Si3Purity:80%Color and Shape:SolidMolecular weight:222.463-CHLOROPROPYLTRICHLOROSILANE
CAS:Formula:C3H6Cl4SiPurity:97%Color and Shape:Straw LiquidMolecular weight:211.98ACRYLOXYMETHYLTRIMETHOXYSILANE
CAS:<p>Acrylate Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Acryloxymethyltrimethoxysilane<br>Coupling agent for UV curable systemsComonomer for ormosilsUsed in microparticle surface modificationComonomer for free-radical polymerizaitonInhibited with MEHQ<br></p>Formula:C7H14O5SiPurity:97%Color and Shape:Straw LiquidMolecular weight:206.27METHACRYLOXYPROPYLTRIMETHOXYSILANE
CAS:<p>Methacrylate Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Methacryloxypropyltrimethoxysilane, 3-(Trimethoxysilyl)propyl methacrylate, MEMO<br>Viscosity: 2 cStSpecific wetting surface: 314 m2/gCopolymerization parameters-e, Q: 0.07, 2.7Coupling agent for radical cure polymer systems and UV cure systemsWidely used in unsaturated polyester-fiberglass compositesCopolymerized with styrene in formation of sol-gel compositesAnalog of (3-acryloxypropyl)trimethoxysilane (SIA0200.0)Used in microparticle surface modification and dental polymer compositesSlower hydrolysis rate than methacryloxymethyltrimethoxysilane (SIM6483.0)Comonomer for free-radical polymerizaitonDetermined by TGA a 25% weight loss of dried hydrolysates at 395°Inhibited with MEHQ, HQ<br></p>Formula:C10H20O5SiPurity:97%Color and Shape:Straw LiquidMolecular weight:248.35N-(3-TRIETHOXYSILYLPROPYL)-4,5-DIHYDROIMIDAZOLE
CAS:<p>N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole; 3-(2-imidazolin-1-yl)propyltriethoxysilane; IMEO; 4,5-dihydro-1-[3-(triethoxysilyl)propyl]-1H-imidazole; 4,5-dihydroimidazolepropyltriethoxysilane<br>Specialty amine functional trialkoxy silaneViscosity: 5 cStCoupling agent for elevated temperature-cure epoxiesUtilized in HPLC of metal chelatesForms proton vacancy conducting polymers with sulfonamides by sol-gelLigand for molecular imprinting of silica with chymotrypsin transition state analog<br></p>Formula:C12H26N2O3SiPurity:97%Color and Shape:Yellow To Brown LiquidMolecular weight:274.43BIS(3-TRIETHOXYSILYLPROPYL)POLYETHYLENE OXIDE (25-30 EO)
CAS:<p>Dipodal PEG Silane (1,400-1,600 g/mol)<br>PEO, Triethoxysilane termination utilized for hydrophilic surface modificationDual functional PEGylation reagentHydrogen bonding hydrophilic silaneHydrolytically stable hydrophilic silane<br></p>Formula:CH3O(C2H4O)6-9(CH2)3Si(OCH3)3Color and Shape:Off-White SolidMolecular weight:1400-1600n-OCTYLDIMETHYLMETHOXYSILANE
CAS:<p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Octyldimethylmethoxysilane; Methoxydimethyloctylsilane; Dimethylmethoxysilyloctane<br>Monoalkoxy silane<br></p>Formula:C11H26OSiPurity:97%Color and Shape:Straw LiquidMolecular weight:202.42PHENETHYLDIMETHYLCHLOROSILANE
CAS:<p>Aromatic Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Phenethyldimethylchlorosilane; 2-(Chlorodimethylsilylethyl)benzene; Chlorodimethyl(2-phenylethyl)silane<br>Contains α-, β-isomers<br></p>Formula:C10H15ClSiPurity:97%Color and Shape:Pale Yellow LiquidMolecular weight:198.773-AMINOPROPYLMETHYLBIS(TRIMETHYLSILOXY)SILANE
CAS:Formula:C10H29NO2Si3Purity:97%Color and Shape:Straw LiquidMolecular weight:279.61DIPHENYLDIMETHOXYSILANE, 98%
CAS:<p>Arylsilane Cross-Coupling Agent<br>The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.<br>Aromatic Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Diphenyldimethoxysilane; Dimethoxydiphenylsilane<br>Viscosity, 25°C: 8.4 cStAlternative to phenyltrimethoxysilane for the cross-coupling of a phenyl groupIntermediate for high temperature silicone resinsDialkoxy silane<br></p>Formula:C14H16O2SiPurity:98%Color and Shape:Straw LiquidMolecular weight:244.361,3-BIS(GLYCIDOXYPROPYL)TETRAMETHYLDISILOXANE
CAS:Formula:C16H34O5Si2Purity:97%Color and Shape:Straw LiquidMolecular weight:362.61VINYLMETHYLDIETHOXYSILANE
CAS:<p>Olefin Functional Dialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Vinylmethyldiethoxysilane; Methylvinyldiethoxysilane; (Diethoxymethyl)silylethylene<br>Used in microparticle surface modificationDipole moment: 1.27 debyeCopolymerization parameters- e,Q; -0.86, 0.020Chain extender, crosslinker for silicone RTVs and hydroxy-functional resins<br></p>Formula:C7H16O2SiPurity:97%Color and Shape:LiquidMolecular weight:160.291,2-BIS(TRICHLOROSILYL)ETHANE, 95%
CAS:Formula:C2H4Cl6Si2Purity:95%Color and Shape:Off-White SolidMolecular weight:296.9411-CYANOUNDECYLTRICHLOROSILANE
CAS:Formula:C12H22Cl3NSiPurity:97%Color and Shape:Straw LiquidMolecular weight:314.764-BIPHENYLYLDIMETHYLCHLOROSILANE
CAS:Formula:C14H15ClSiPurity:97%Color and Shape:Off-White SolidMolecular weight:246.811,3-DICHLOROTETRAMETHYLDISILOXANE
CAS:<p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>1,3-Dichlorotetramethyldisiloxane; Tetramethyldichlorodisiloxane; 1,3-Dichloro-1,1,3,3-tetramethyldisiloxane<br>Vapor pressure, 25 °C: 8 mmDiol protection reagent<br></p>Formula:C4H12Cl2OSi2Purity:97%Color and Shape:Straw Amber LiquidMolecular weight:203.22[(5-BICYCLO[2.2.1]HEPT-2-ENYL)ETHYL]TRIETHOXYSILANE, tech, endo/exo isomers
CAS:<p>Olefin Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>[(5-Bicyclo[2.2.1]hept-2-enyl)ethyl]triethoxysilane; (Norbornenyl)ethyltriethoxysilane; Triethoxysilylethylnorbornene<br>Endo/exo isomersUsed in microparticle surface modificationComonomer for polyolefin polymerization<br></p>Formula:C15H28O3SiPurity:techMolecular weight:284.47
