CymitQuimica logo
Silanes

Silanes

Silanes are silicon-based compounds with one or more organic groups attached to a silicon atom. They serve as crucial building blocks in organic and inorganic synthesis, especially in surface modification, adhesion promotion, and the production of coatings and sealants. Silanes are widely used in the semiconductor industry, glass treatment, and as crosslinking agents in polymer chemistry. At CymitQuimica, we offer a diverse range of silanes designed for your research and industrial applications.

Subcategories of "Silanes"

Found 1234 products of "Silanes"

Sort by

Purity (%)
0
100
|
0
|
50
|
90
|
95
|
100
products per page.
  • 3-(Triallylsilyl)propyl Acrylate (stabilized with MEHQ)

    CAS:
    Formula:C15H24O2Si
    Purity:>92.0%(GC)
    Color and Shape:Light yellow to Brown clear liquid
    Molecular weight:264.44

    Ref: 3B-T3228

    5g
    Discontinued
    Discontinued product
  • (Trifluoromethyl)Trimethylsilane

    CAS:
    Formula:C4H9F3Si
    Purity:98%
    Color and Shape:Liquid
    Molecular weight:142.1950

    Ref: IN-DA003CPC

    ne
    Discontinued
    Discontinued product
  • 1,3-DIPHENYLTETRAKIS(DIMETHYLSILOXY)DISILOXANE, 92%

    CAS:
    Formula:C20H38O5Si6
    Purity:92%
    Color and Shape:Liquid
    Molecular weight:527.03

    Ref: 3H-SID4582.0

    5g
    Discontinued
    25g
    Discontinued
    2kg
    Discontinued
    Discontinued product
  • N-(2-AMINOETHYL)-3-AMINOPROPYLTRIETHOXYSILANE, 92%

    CAS:

    Diamino Functional Trialkoxy Silane
    Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
    N-(2-Aminoethyl)-3-aminopropyltriethoxysilane; N-[3-(Triethoxysilyl)propyl]-1,2-ethanediamine; N-[3-(Triethoxysilyl)propyl]-ethylenediamine
    Primary amine with an internal secondary amine coupling agent for UV cure and epoxy systemsUsed in microparticle surface modificationSlower hydrolysis rate than SIA0591.0 and SIA0592.6

    Formula:C11H28N2O3Si
    Purity:92%
    Color and Shape:Straw Liquid
    Molecular weight:264.55

    Ref: 3H-SIA0590.5

    25g
    Discontinued
    Discontinued product
  • PHENETHYLTRIMETHOXYSILANE, tech

    CAS:

    Aromatic Silane - Conventional Surface Bonding
    Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
    Phenethyltrimethoxysilane; Phenylethyltrimethoxysilane; Trimethoxy(2-phenylethyl)silane
    Contains α-, β-isomersComponent in optical coating resinsIn combination with TEOS,SIT7110.0, forms hybrid silicalite-1 molecular sieves

    Formula:C11H18O3Si
    Purity:97%
    Color and Shape:Straw To Dark Amber Liquid
    Molecular weight:226.35

    Ref: 3H-SIP6722.6

    25g
    Discontinued
    2kg
    Discontinued
    100g
    Discontinued
    18kg
    Discontinued
    190kg
    Discontinued
    Discontinued product
  • PHENYLMETHYLDICHLOROSILANE

    CAS:

    Aromatic Silane - Conventional Surface Bonding
    Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
    Arylsilane Cross-Coupling Agent
    The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.
    Phenylmethyldichlorosilane; Methylphenyldichlorosilane; Dichloromethylphenylsilane
    Viscosity, 20 °C: 1.2 cStΔHvap: 48.1 kJ/molVapor pressure, 82.5 °C: 13 mmMonomer for high temperature siliconesReacts well under the influence of NaOH versus fluoride activation w/ aryl chlorides, bromides, and iodides

    Formula:C7H8Cl2Si
    Purity:97%
    Color and Shape:Liquid
    Molecular weight:191.13

    Ref: 3H-SIP6738.0

    25g
    Discontinued
    18kg
    Discontinued
    500g
    Discontinued
    200kg
    Discontinued
    Discontinued product
  • 1,3,5,7,9-PENTAMETHYLCYCLOPENTASILOXANE, 90%

    CAS:

    Siloxane-Based Silane Reducing Agent
    Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.
    1,3,5,7,9-Pentamethylcyclopentasiloxane; D'5; Methyl hydrogen cyclic pentamer; 2,4,6,8,10-Pentamethylcyclopentasiloxane
    ΔHvap: 47.3 kJ/molContains other cyclic homologsExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007

    Formula:C5H20O5Si5
    Purity:90%
    Color and Shape:Liquid
    Molecular weight:300.64

    Ref: 3H-SIP6718.0

    25g
    Discontinued
    2kg
    Discontinued
    100g
    Discontinued
    16kg
    Discontinued
    Discontinued product
  • BIS(DIETHYLAMINO)SILANE

    CAS:
    Formula:C8H22N2Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:174.16

    Ref: 3H-SIB1069.0

    10g
    Discontinued
    100g
    Discontinued
    Discontinued product
  • ISOTETRASILANE

    CAS:

    Volatile Higher Silane
    Volatile higher silanes are low temperature, high deposition rate precursors. By appropriate selection of precursor and deposition conditions, silicon deposition can be shifted from amorphous hydrogenated silicon toward microcrystalline silicon structures. As the number of silicon atoms increases beyond two, electrons are capable of sigma–sigma bond conjugation. The dissociative adsorption of two of the three hydrogen atoms on terminal silicon atoms has a lower energy barrier.
    Isotetrasilane; (Trisilyl)silane; 2-Silyltrisilane
    PYROPHORICAIR TRANSPORT FORBIDDEN?Hvap: 32.5 kJ/molPrecursor for low temp. epitaxy of doped crystalline siliconEmployed in low temperature CVD of amorphous silicon

    Formula:H10Si4
    Purity:98%
    Color and Shape:Colourless Liquid
    Molecular weight:122.42

    Ref: 3H-SII6463.4

    5g
    Discontinued
    Discontinued product
  • 3-ACRYLAMIDOPROPYLTRIS(TRIMETHYLSILOXY)SILANE, tech

    CAS:
    Formula:C15H37NO4Si4
    Purity:95%
    Color and Shape:Solid
    Molecular weight:407.8

    Ref: 3H-SIA0150.0

    10g
    Discontinued
    Discontinued product
  • METHOXY(TRIETHYLENEOXY)UNDECYLTRIMETHOXYSILANE

    CAS:

    Tipped PEG Silane (438.68 g/mol)
    PEG3C11 Silane3,3-Dimethoxy-2,15,18,24-pentaoxa-3-silapentacosanePEO, Trimethoxysilane termination utilized for hydrophilic surface modificationPEGylation reagentHydrogen bonding hydrophilic silane

    Formula:C21H46O7Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:438.68

    Ref: 3H-SIM6493.7

    1g
    Discontinued
    10g
    Discontinued
    Discontinued product
  • PHENYLDIMETHYLSILANE

    CAS:

    Phenyl-Containing Blocking Agent
    Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.
    Tri-substituted Silane Reducing Agent
    Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.
    Phenyldimethylsilane; Dimethylphenylsilane;
    Vapor pressure, 25 °C: 4 mmReacts with alcohols in presence of Wilkinson’s catalystUsed to prepare α-phenyldimethylsilyl esters with high enantioselectivityYields optically active reduction products with chiral Rh or Pd catalystsUndergoes 1,4-addition to pyridines forming N-silylated dihydropyridinesUsed in the fluoride ion-catalyzed reduction of aldehydes and ketones, and α-substituted alkanones to threo productsHydrosilylation of 1,4-bis(trimethylsilyl)butadiyne can go to the trisilyl allene or the trisilyl enyneErythro reduction of α-substituted alkanones to diols and aminoethanolsUsed to reduce α-amino ketones to aminoethanols with high stereoselectivityTogether with CuCl reduces aryl ketones, but not dialkyl ketonesUsed in the silylformylation of acetylenesExcellent reducing agent for the reduction of enones to saturated ketonesShows better selectivity than LAH in the reduction of oximes to alkoxyamines.Extensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Summary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure

    Formula:C8H12Si
    Purity:97%
    Color and Shape:Liquid
    Molecular weight:136.27

    Ref: 3H-SIP6729.0

    25g
    Discontinued
    2kg
    Discontinued
    100g
    Discontinued
    15kg
    Discontinued
    Discontinued product
  • PHENYLMETHYLDIMETHOXYSILANE

    CAS:

    Aromatic Silane - Conventional Surface Bonding
    Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
    Phenylmethyldimethoxysilane; Methylphenyldimethoxysilane; Dimethoxymethylphenylsilane
    Viscosity, 20 °C: 1.65 cStAdditive to coupling agent systems, increasing interface flexibility, UV stabilityDialkoxy silane

    Formula:C9H14O2Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:182.29

    Ref: 3H-SIP6740.0

    25g
    Discontinued
    2kg
    Discontinued
    18kg
    Discontinued
    250g
    Discontinued
    185kg
    Discontinued
    Discontinued product
  • SILICON DIOXIDE, amorphous GEL, 30% in isopropanol

    CAS:
    Formula:SiO2
    Color and Shape:Translucent Liquid
    Molecular weight:60.09

    Ref: 3H-SIS6963.0

    18kg
    Discontinued
    500g
    Discontinued
    2.5kg
    Discontinued
    Discontinued product
  • TRIETHOXYSILYLUNDECANAL, tech

    CAS:

    Aldehyde Functional Trialkoxy Silane
    Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
    Triethoxysilylundecanal
    Treated surface contact angle, water: 70°Long chain coupling agent for DNAProvides greater stability for coupled proteins than shorter alkyl homologsLong chain homolog of triethoxysilylbutyraldehyde (SIT8185.3)

    Formula:C17H36O4Si
    Purity:tech
    Color and Shape:Straw Liquid
    Molecular weight:332.56

    Ref: 3H-SIT8194.0

    5g
    Discontinued
    Discontinued product
  • 1,3-DIVINYLTETRAMETHYLDISILOXANE

    CAS:

    Alkenylsilane Cross-Coupling Agent
    The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.
    1,3-Divinyltetramethyldisiloxane; Diethenyltetramethyldisiloxane; Tetramethyldivinyldisiloxane; Divinyltetramethyldisiloxane
    Silicone end-capperPotential vinyl nucleophile in cross-coupling reactionsModifier for vinyl addition silicone formulationsPotential vinyl donor in cross-coupling reactionsExtensive review of silicon based cross-coupling agents: Denmark, S. E. et al. "Organic Reactions, Volume 75" Denmark, S. E. ed., John Wiley and Sons, 233, 2011

    Formula:C8H18OSi2
    Purity:97%
    Color and Shape:Liquid
    Molecular weight:186.4

    Ref: 3H-SID4613.0

    2kg
    Discontinued
    50g
    Discontinued
    15kg
    Discontinued
    500g
    Discontinued
    160kg
    Discontinued
    Discontinued product
  • DI-t-BUTOXYDIACETOXYSILANE, 95%

    CAS:
    Formula:C12H24O6Si
    Purity:95%
    Color and Shape:Liquid
    Molecular weight:292.4

    Ref: 3H-SID2790.1

    3kg
    Discontinued
    Discontinued product
  • (3-GLYCIDOXYPROPYL)DIMETHYLETHOXYSILANE

    CAS:

    (3-Glycidoxypropyl)dimethylethoxysilane; 3-(2,3-epoxypropoxypropyl)dimethylethoxysilane
    Epoxy functional monoalkoxy silaneUsed in microparticle surface modificationCoupling agent for UV cure and epoxy systemsEpoxy silane treated surfaces convert to hydrophilic-diols when exposed to moisture

    Formula:C10H22O3Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:218.37

    Ref: 3H-SIG5825.0

    10g
    Discontinued
    2kg
    Discontinued
    50g
    Discontinued
    Discontinued product
  • n-OCTADECYLDIMETHYLCHLOROSILANE, 70% in toluene

    CAS:

    Alkyl Silane - Conventional Surface Bonding
    Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
    n-Octadecyldimethylchlorosilane; Dimethyl-n-octadecylchlorosilane; Chlorodimethyloctadecylsilane; Chlorodimethylsilyl-n-octadecane
    Contains 5-10% C18 isomers70% in toluene

    Formula:C20H43ClSi
    Color and Shape:Straw Amber Liquid
    Molecular weight:347.1

    Ref: 3H-SIO6615.2

    25g
    Discontinued
    15kg
    Discontinued
    750g
    Discontinued
    Discontinued product
  • 3-ISOCYANOTOPROPYLTRIMETHOXYSILANE, 92%

    CAS:

    3-Isocyanotopropyltrimethoxysilane; trimethoxysilylpropylisocyanate
    Isocyanate functional trialkoxy silaneViscosity: 1.4 cStCoupling agent for urethanes, polyols, and aminesComponent in hybrid organic/inorganic urethanes

    Formula:C7H15NO4Si
    Purity:92%
    Color and Shape:Straw Liquid
    Molecular weight:205.29

    Ref: 3H-SII6456.0

    25g
    Discontinued
    2kg
    Discontinued
    100g
    Discontinued
    18kg
    Discontinued
    200kg
    Discontinued
    Discontinued product