CymitQuimica logo
Silanes

Silanes

Silanes are silicon-based compounds with one or more organic groups attached to a silicon atom. They serve as crucial building blocks in organic and inorganic synthesis, especially in surface modification, adhesion promotion, and the production of coatings and sealants. Silanes are widely used in the semiconductor industry, glass treatment, and as crosslinking agents in polymer chemistry. At CymitQuimica, we offer a diverse range of silanes designed for your research and industrial applications.

Subcategories of "Silanes"

Found 1234 products of "Silanes"

Sort by

Purity (%)
0
100
|
0
|
50
|
90
|
95
|
100
products per page.
  • n-DECYLTRICHLOROSILANE

    CAS:

    Alkyl Silane - Conventional Surface Bonding
    Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
    n-Decyltrichlorosilane; Trichlorosilyldecane; Trichlorodecylsilane

    Formula:C10H21Cl3Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:275.72

    Ref: 3H-SID2663.0

    1kg
    Discontinued
    25g
    Discontinued
    2kg
    Discontinued
    100g
    Discontinued
    Discontinued product
  • HEXAMETHYLCYCLOTRISILOXANE, 98%

    CAS:

    Hexamethylcyclotrisiloxane (HMCTS, D3)
    Undergoes ring-opening anionic polymerizationReacts with three equivalents of an organolithium reagent to give derivatized dimethylsilanols

    Formula:C6H18O3Si3
    Purity:98%
    Color and Shape:Solid
    Molecular weight:222.46

    Ref: 3H-SIH6105.1

    2kg
    Discontinued
    100g
    Discontinued
    10kg
    Discontinued
    500g
    Discontinued
    Discontinued product
  • DI-t-BUTOXYDIACETOXYSILANE, 95%

    CAS:
    Formula:C12H24O6Si
    Purity:95%
    Color and Shape:Liquid
    Molecular weight:292.4

    Ref: 3H-SID2790.1

    3kg
    Discontinued
    Discontinued product
  • N-(6-AMINOHEXYL)AMINOMETHYLTRIETHOXYSILANE, 92%

    CAS:

    Diamino Functional Trialkoxy Silane
    Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
    N-(6-Aminohexyl)aminomethyltriethoxysilane; N-[6-Triethoxysilyl)methyl]hexamethylethylenediamine
    Primary amine and an internal secondary amine coupling agent for UV cure and epoxy systemsUsed in microparticle surface modification

    Formula:C13H32N2O3Si
    Purity:92%
    Color and Shape:Straw Liquid
    Molecular weight:292.49

    Ref: 3H-SIA0592.6

    25g
    Discontinued
    100g
    Discontinued
    Discontinued product
  • PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE

    CAS:

    Aromatic Silane - Conventional Surface Bonding
    Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
    Phenylmethylbis(dimethylamino)silane; Bis(dimethylamino)methylphenylsilane; Bis(dimethylamino)phenylmethylsilane; N,N,N',N',1-Pentamethyl-1-phenylsilanediamine

    Formula:C11H20N2Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:208.38

    Ref: 3H-SIP6736.8

    10g
    Discontinued
    Discontinued product
  • 11-CYANOUNDECYLTRICHLOROSILANE

    CAS:
    Formula:C12H22Cl3NSi
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:314.76

    Ref: 3H-SIC2456.3

    5g
    Discontinued
    Discontinued product
  • LITHIUM HEXAMETHYLDISILAZIDE 1M in tetrahydrofuran

    CAS:
    Formula:C6H18LiNSi2
    Color and Shape:Yellow To Amber Liquid
    Molecular weight:167.33

    Ref: 3H-SIL6467.4

    2kg
    Discontinued
    100g
    Discontinued
    16kg
    Discontinued
    165kg
    Discontinued
    Discontinued product
  • DIPHENYLCHLOROSILANE, tech

    CAS:
    Formula:C12H11ClSi
    Purity:tech
    Color and Shape:Straw Liquid
    Molecular weight:218.76

    Ref: 3H-SID4495.0

    10g
    Discontinued
    2kg
    Discontinued
    50g
    Discontinued
    Discontinued product
  • n-OCTADECYLMETHYLDICHLOROSILANE, 97%

    CAS:
    Formula:C19H40Cl2Si
    Purity:97% including isomers
    Color and Shape:Straw Liquid
    Molecular weight:367.52

    Ref: 3H-SIO6625.1

    25g
    Discontinued
    Discontinued product
  • PHENYLTRIS(DIMETHYLSILOXY)SILANE

    CAS:

    Siloxane-Based Silane Reducing Agent
    Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.
    Phenyltris(dimethylsiloxy)silane; Phenyl hydride cross-linker; 3-[(Dimethylsilyl)oxy]-1,1,5,5-tetramethyl-3-phenyltrisiloxane
    High molecular weight silane reducing agentCrosslinker for vinylphenylsilicone 2-component elastomersExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007

    Formula:C12H26O3Si4
    Purity:97%
    Color and Shape:Liquid
    Molecular weight:330.68

    Ref: 3H-SIP6826.0

    25g
    Discontinued
    2kg
    Discontinued
    100g
    Discontinued
    17kg
    Discontinued
    180kg
    Discontinued
    Discontinued product
  • 2-[(ACETOXY(POLYETHYLENEOXY)PROPYL]TRIETHOXYSILANE, 95%

    CAS:

    Ester Functional Trialkoxy Silane
    Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
    Hydrophilic Silane - Polar - Hydrogen Bonding
    Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
    2-[(Acetoxy(polyethyleneoxy)propyl]triethoxysilane; (Triethoxysilylpropylpolyethylene oxide)acetate
    Viscosity: 50 cStFunctional PEG Silane (500-700 g/mol)PEO, Ester, Triethoxysilane termination utilized for hydrophilic surface modificationDual functional PEGylation reagentHydrogen bonding hydrophilic silaneUsed in microparticle surface modification

    Formula:CH3O(C2H4O)6-9(CH2)3Si(OCH3)3
    Purity:95%
    Color and Shape:Straw Amber Liquid
    Molecular weight:500-700

    Ref: 3H-SIA0078.0

    25g
    Discontinued
    Discontinued product
  • N-(2-AMINOETHYL)-3-AMINOPROPYLTRIETHOXYSILANE, 92%

    CAS:

    Diamino Functional Trialkoxy Silane
    Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
    N-(2-Aminoethyl)-3-aminopropyltriethoxysilane; N-[3-(Triethoxysilyl)propyl]-1,2-ethanediamine; N-[3-(Triethoxysilyl)propyl]-ethylenediamine
    Primary amine with an internal secondary amine coupling agent for UV cure and epoxy systemsUsed in microparticle surface modificationSlower hydrolysis rate than SIA0591.0 and SIA0592.6

    Formula:C11H28N2O3Si
    Purity:92%
    Color and Shape:Straw Liquid
    Molecular weight:264.55

    Ref: 3H-SIA0590.5

    25g
    Discontinued
    Discontinued product
  • PHENYLDICHLOROSILANE

    CAS:
    Formula:C6H6Cl2Si
    Purity:95%
    Color and Shape:Straw Liquid
    Molecular weight:177.1

    Ref: 3H-SIP6725.0

    10g
    Discontinued
    2kg
    Discontinued
    50g
    Discontinued
    750g
    Discontinued
    Discontinued product
  • (N,N-DIMETHYLAMINO)TRIETHYLSILANE

    CAS:

    Trialkylsilyl Blocking Agent
    Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.
    N,N-Dimethylaminotriethylsilane; Triethylsilyldimethylamine
    Very reactive triethylsilyl protecting groupDimethylamine by-product producedUsed primarily for the protection of alcoholsCan be used to protect amines and carboxylic acidsSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure

    Formula:C8H21NSi
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:159.35

    Ref: 3H-SID3603.0

    50g
    Discontinued
    Discontinued product