Building Blocks
This section contains fundamental products for the synthesis of organic and biological compounds. Building blocks are the essential starting materials used to construct complex molecules through various chemical reactions. They play a critical role in drug discovery, material science, and chemical research. At CymitQuimica, we offer a diverse range of high-quality building blocks to support your innovative research and industrial projects, ensuring you have the essential components for successful synthesis.
Subcategories of "Building Blocks"
- Boronic Acids & Boronic Acid Derivatives(5,756 products)
- Chiral Building Blocks(1,242 products)
- Hydrocarbon Building Blocks(6,095 products)
- Organic Building Blocks(61,055 products)
Found 199650 products of "Building Blocks"
Sort by
Purity (%)
0
100
|
0
|
50
|
90
|
95
|
100
2-Cyclohexyl-2-methoxyacetic acid
CAS:<p>2-Cyclohexyl-2-methoxyacetic acid (CHMA) is a spectroscopic reagent. The 13C NMR spectrum of CHMA shows the presence of two carbonyl groups, one methylene and one methoxymethylene group. The compound can be derivatized to produce an aldehyde or ester.</p>Formula:C9H16O3Purity:Min. 95%Molecular weight:172.22 g/mol4-Amino-6-hydroxybenzene-1,3-dicarboxylic acid
CAS:<p>Versatile small molecule scaffold</p>Formula:C8H7NO5Purity:Min. 95%Molecular weight:197.14 g/mol4,7-Dimethyl-2,3-dihydro-1H-isoindole-1,3-dione
CAS:<p>Versatile small molecule scaffold</p>Formula:C10H9NO2Purity:Min. 95%Molecular weight:175.18 g/mol2-Amino-3,6-dimethylbenzoic acid
CAS:<p>2-Amino-3,6-dimethylbenzoic acid is an equilibrating agent that has been used to study the interaction and kinetics of hydrogen bonds. It is a white crystalline solid with a molecular weight of 164.2 g/mol and a melting point of 127 °C. The kinetic method has been used to study the equilibration between its two forms: 3,4-dihydroxybenzoic acid (DHB) and 2-hydroxybenzoic acid (HBA). This equilibrium can be described by the equation DHB + HBA ⇌ DHB + HBA, where the equilibrium constant is K = [DHB][HBA]/[DHB][HBA]. The kinetic method was also applied to study the reaction between 2-amino-3,6-dimethylbenzoic acid and methyl derivatives of olefins. In this case, the kinetic method was used to determine</p>Formula:C9H11NO2Purity:Min. 95%Molecular weight:165.19 g/molbicyclo[2.2.1]heptane-1,4-dicarboxylic acid
CAS:<p>Versatile small molecule scaffold</p>Formula:C9H12O4Purity:Min. 95%Molecular weight:184.19 g/mol4-(Hydroxymethyl)oxazolidin-2-one
CAS:<p>4-(Hydroxymethyl)oxazolidin-2-one is an activated form of oxazolidinones that can react with potassium ions to form a stable, water soluble salt. This reaction is catalyzed by lanthanum ion and the reaction mechanism involves the formation of fatty acid esters. It has been found to be effective in the synthesis of methyl palmitate, which is a fatty acid that can be used as a raw material for biodiesel production. The reaction intermediates are dehydrating and constant, and the metal ion is lanthanum. 4-(Hydroxymethyl)oxazolidin-2-one has impurities such as adiponitrile, acidic impurities, and stereoselective impurities.</p>Formula:C4H7NO3Purity:Min. 95%Molecular weight:117.1 g/mol4-[(Ethoxycarbonyl)oxy]benzoic acid
CAS:<p>Versatile small molecule scaffold</p>Formula:C10H10O5Purity:Min. 95%Molecular weight:210.18 g/mol2-(2,6-Dimethoxyphenyl)acetic acid
CAS:<p>2-(2,6-Dimethoxyphenyl)acetic acid is a phenolic compound that can be found in the urine of people suffering from alcaptonuria. This disease is caused by the accumulation of homogentisic acid in the body and results in abnormalities such as neural tube defects. 2-(2,6-Dimethoxyphenyl)acetic acid is formed during the conversion of resorcinol to dihydroxybenzene by demethylation. It also has low yields when synthesized from methyl ester and benzene, which makes it difficult to produce synthetically.</p>Formula:C10H12O4Purity:Min. 95%Molecular weight:196.2 g/mol4-(2-Chloro-4-methoxyphenyl)-4-oxobutanoic acid
CAS:<p>Versatile small molecule scaffold</p>Formula:C11H11ClO4Purity:Min. 95%Molecular weight:242.65 g/mol2-(4-Hydroxyphenyl)-2-oxoacetic acid
CAS:<p>2-Hydroxyphenyl-2-oxoacetic acid (HPPAA) is a pharmaceutical preparation used to treat insulin resistance and type 2 diabetes. It has been shown to increase the activity of mitochondrial enzymes, inhibit oxidative phosphorylation, and increase the oxidation of fatty acids. HPPAA has also been shown to reduce carnitine levels in muscle tissue, which may contribute to its anti-obesity effects. HPPAA is an analytical method for detecting insulin resistance in Sprague-Dawley rats. This method is based on UV absorption at 280 nm and can be used with other analytical methods such as gas chromatography or liquid chromatography.</p>Formula:C8H6O4Purity:Min. 95%Molecular weight:166.13 g/mol{7-Oxabicyclo[2.2.1]heptan-1-yl}methanol
CAS:<p>Versatile small molecule scaffold</p>Formula:C7H12O2Purity:Min. 95%Molecular weight:128.2 g/mol4-methoxypyrimidin-5-amine
CAS:<p>Versatile small molecule scaffold</p>Formula:C5H7N3OPurity:Min. 95%Molecular weight:125.12 g/mol3-(Pyridin-2-yl)propan-1-amine
CAS:<p>Versatile small molecule scaffold</p>Formula:C8H12N2Purity:Min. 95%Molecular weight:136.2 g/molN-Methyl-3-(pyridin-2-yl)propan-1-amine
CAS:<p>Versatile small molecule scaffold</p>Formula:C9H14N2Purity:Min. 95%Molecular weight:150.22 g/mol3-(Pyridin-2-yl)propan-1-amine dihydrochloride
CAS:<p>Versatile small molecule scaffold</p>Formula:C8H14Cl2N2Purity:Min. 95%Molecular weight:209.11 g/mol3-Nitropyridin-4(1H)-one
CAS:<p>3-Nitropyridin-4(1H)-one is an organic solvent that has a number of industrial applications. It is used as a raw material for the production of other chemicals and as a cleaning agent in wastewater treatment plants. 3-Nitropyridin-4(1H)-one is also used in the synthesis of amines and nitro compounds. This compound is found in high concentrations in urban air due to its use as a solvent and its presence as a contaminant in carbon tetrachloride. The sublimed form of 3-nitropyridin-4(1H)-one has been shown to react with primary amines, amines, and tautomeric compounds, leading to the formation of nitro compounds or chloride ions. The nmr spectra show that this compound interacts with low energy radiation.</p>Formula:C5H4N2O3Purity:Min. 95%Molecular weight:140.1 g/mol2-Hydroxy-3-(methylsulfanyl)propanoic acid
CAS:<p>2-Hydroxy-3-(methylsulfanyl)propanoic acid is a polychromatic compound that has been used as an x-ray contrast agent. It has been shown to be useful in imaging techniques such as diffraction, x-ray, and electron microscopy. 2-Hydroxy-3-(methylsulfanyl)propanoic acid is also used in the study of human genome structure and function. This molecule has been found to bind to DNA in the nucleus, which is believed to help with its ability to transport electrons along DNA molecules. 2-Hydroxy-3-(methylsulfanyl)propanoic acid has been shown to have anticancer properties and has also been found useful for tissue imaging.</p>Formula:C4H8O3SPurity:Min. 95%Molecular weight:136.17 g/mol2-Amino-3,3-dimethylcyclohex-1-ene-1-carbonitrile
CAS:<p>Versatile small molecule scaffold</p>Formula:C9H14N2Purity:Min. 95%Molecular weight:150.22 g/mol(Triphenylphosphoranylidene)ketene
CAS:<p>Triphenylphosphoranylidene)ketene is an amine-containing compound that is used as a catalyst in organic synthesis. It can be used in reactions involving the cleavage of carbon-carbon bonds and has been shown to oxidize alcohols, ethers, and esters. Triphenylphosphoranylidene)ketene was first synthesized in 1887 by the reaction of triphenylphosphine with ethylene dione.</p>Formula:C20H15OPPurity:Min. 95%Molecular weight:302.31 g/mol2-Amino-4H-1,3-benzothiazin-4-one
CAS:<p>Versatile small molecule scaffold</p>Formula:C8H6N2OSPurity:Min. 95%Molecular weight:178.21 g/mol
