CymitQuimica logo
Silanes

Silanes

Silanes are silicon-based compounds with one or more organic groups attached to a silicon atom. They serve as crucial building blocks in organic and inorganic synthesis, especially in surface modification, adhesion promotion, and the production of coatings and sealants. Silanes are widely used in the semiconductor industry, glass treatment, and as crosslinking agents in polymer chemistry. At CymitQuimica, we offer a diverse range of silanes designed for your research and industrial applications.

Subcategories of "Silanes"

Found 1235 products of "Silanes"

Sort by

Purity (%)
0
100
|
0
|
50
|
90
|
95
|
100
products per page.
  • ALLYLTRIMETHOXYSILANE

    CAS:
    <p>Olefin Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Alkenylsilane Cross-Coupling Agent<br>The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.<br>Allyltrimethoxysilane; 1-Trimethoxysilylprop-2-ene<br>Adhesion promoter for vinyl-addition siliconesAllylation of ketones, aldehydes and imines with dual activation of a Lewis Acid and fluoride ionUsed in the regioselective generation of the thermodynamically more stable enol trimethoxysilyl ethers, which in turn are used in the asymmetric generation of quaternary carbon centersConverts arylselenyl bromides to arylallylselenidesAllylates aryl iodidesUsed in microparticle surface modificationComonomer for polyolefin polymerizationExtensive review of silicon based cross-coupling agents: Denmark, S. E. et al. "Organic Reactions, Volume 75" Denmark, S. E. ed., John Wiley and Sons, 233, 2011<br></p>
    Formula:C6H14O3Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:162.26

    Ref: 3H-SIA0540.0

    2kg
    To inquire
    50g
    To inquire
    16kg
    To inquire
    150kg
    To inquire
  • 1,1,3,3,5,5-HEXAMETHYLTRISILOXANE

    CAS:
    <p>Siloxane-Based Silane Reducing Agent<br>Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.<br>1,1,3,3,5,5-hexamethyltrisiloxane; Methyl 1,5-dihydro-1,1,3,3-hexamethyltrsiloxane; M’DM’<br>High molecular weight silane reducing agentUndergoes hydrosilylation reactionsExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007<br></p>
    Formula:C6H20O2Si3
    Purity:97%
    Color and Shape:Liquid
    Molecular weight:208.48

    Ref: 3H-SIH6117.0

    2kg
    To inquire
    14kg
    To inquire
    160kg
    To inquire
  • BIS[3-(TRIETHOXYSILYL)PROPYL]DISULFIDE, 90%

    CAS:
    <p>Bis[3-(triethoxysilyl)propyl]disulfide; bis(triethoxysilyl)-4,5-dithiooctane<br>Sulfur functional dipodal silaneContains sulfide and tetrasulfideDipodal coupling agent/vulcanizing agent for rubbersIntermediate for mesoporous silicas with acidic pores<br></p>
    Formula:C18H42O6S2Si2
    Purity:90%
    Color and Shape:Pale Yellow Amber Liquid
    Molecular weight:474.82

    Ref: 3H-SIB1824.6

    2kg
    To inquire
  • 1,2-BIS(TRIETHOXYSILYL)ETHANE

    CAS:
    <p>Alkyl Silane - Dipodal Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Non Functional Alkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Dipodal Silane<br>Dipodal silanes are a series of adhesion promoters that have intrinsic hydrolytic stabilities up to ~10,000 times greater than conventional silanes and are used in applications such as plastic optics, multilayer printed circuit boards and as adhesive primers for ferrous and nonferrous metals. They have the ability to form up to six bonds to a substrate compared to conventional silanes with the ability to form only three bonds to a substrate. Many conventional coupling agents are frequently used in combination with 10-40% of a non-functional dipodal silane, where the conventional coupling agent provides the appropriate functionality for the application, and the non-functional dipodal silane provides increased durability. Also known as bis-silanes additives enhance hydrolytic stability, which impacts on increased product shelf life, ensures better substrate bonding and also leads to improved mechanical properties in coatings as well as composite applications.<br>1,2-Bis(triethoxysilyl)ethane (Hexaethoxydisilethylene, BSE)<br>ΔHvap: 101.5 kJ/molVapor pressure, 150°: 10mmAdditive to silane coupling agent formulations that enhance hydrolytic stabilityEmployed in corrosion resistant coating and primers for steel and aluminumComponent in evaporation-induced self-assembly of mesoporous structuresForms mesoporous molecular sieves that can be further functionalizedSolg-gels of α,ω-bis(trimethoxysilyl)alkanes reportedHydrolysis kinetics studied7Advanced silane in SIVATE™ E610Used as an adhesion promoter in Bird-deterrent Glass Coatings<br></p>
    Formula:C14H34O6Si2
    Purity:97%
    Color and Shape:Liquid
    Molecular weight:354.59

    Ref: 3H-SIB1817.0

    25g
    To inquire
    2kg
    To inquire
    100g
    To inquire
    16kg
    To inquire
    180kg
    To inquire
  • TRIMETHYLCHLOROSILANE

    CAS:
    <p>Trimethylsilyl Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Trimethylchorosilane; Chlorotrimethylsilane; Trimethylsilyl chloride; TMCS<br>Viscosity: 0.47 cStΔHcomb: -2,989 kJ/molΔHform: -354 kJ/molΔHvap: 27.6 kJ/molDipole moment: 2.09 debyeSurface tension: 17.8 mN/mSpecific heat: 1.76 J/g/°CCoefficient of thermal expansion: 1.2 x 10-3Vapor pressure, 20 °: 190 mmVapor pressure, 50 °C: 591 mmCritical temperature: 224.6 °CCritical pressure: 31.6 atmMost economical and broadly used silylation reagentEnhances Claisen rearrangementEnhances the deprotection of tBOC-protected amino acidsEnhances ethylene glycol ketalization reactionCatalyzes the formation of chlorohydrin esters from diolsReviewed as water scavenger in reactions of carbonyl compoundsFacilitates Michael additionsReacts in presence of HCl acceptorWill silylate strong acids with expulsion of HClHigh purity grade available, SIT8510.1Protects hindered alcohols with Mg/DMFNafion SAC-13 has been shown to be a recyclable catalyst for the trimethylsilylation of primary, secondary, and tertiary alcohols in excellent yields and short reaction timesSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formula:C3H9ClSi
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:108.64

    Ref: 3H-SIT8510.0

    25g
    To inquire
    3kg
    To inquire
    15kg
    To inquire
    750g
    To inquire
    170kg
    To inquire
  • DIMETHYLSILA-14-CROWN-5, 95%

    CAS:
    <p>Silacrown (250.37 g/mol)<br>2,2-Dimethyl-1,3,6,9,12-pentaoxa-2-silacyclotetradecaneCrown ether analogDual end protected PEGPotential Li ion electrolyte<br></p>
    Formula:C10H22O5Si
    Purity:95%
    Color and Shape:Liquid
    Molecular weight:250.37

    Ref: 3H-SID4220.5

    25g
    To inquire
  • DIALLYLDIMETHYLSILANE, 92%

    CAS:
    Formula:C8H16Si
    Purity:92%
    Color and Shape:Straw Liquid
    Molecular weight:140.3

    Ref: 3H-SID2745.0

    25g
    To inquire
  • PENTAFLUOROPHENYLTRIETHOXYSILANE

    CAS:
    <p>Arylsilane Cross-Coupling Agent<br>The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.<br>Pentafluorophenyltriethoxysilane; Triethoxysilylperfluorobenzene<br>Forms hydrogen-free silicone resins useful in optical coatingsUseful for the preparation of pentafluorophenyl derivativesExtensive review of silicon based cross-coupling agents: Denmark, S. E. et al. "Organic Reactions, Volume 75" Denmark, S. E. ed., John Wiley and Sons, 233, 2011<br></p>
    Formula:C12H15F5O3Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:330.33

    Ref: 3H-SIP6716.7

    25g
    To inquire
  • 1,2-BIS(TRIMETHOXYSILYL)DECANE

    CAS:
    <p>Alkyl Silane - Dipodal Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Non Functional Alkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Dipodal Silane<br>Dipodal silanes are a series of adhesion promoters that have intrinsic hydrolytic stabilities up to ~10,000 times greater than conventional silanes and are used in applications such as plastic optics, multilayer printed circuit boards and as adhesive primers for ferrous and nonferrous metals. They have the ability to form up to six bonds to a substrate compared to conventional silanes with the ability to form only three bonds to a substrate. Many conventional coupling agents are frequently used in combination with 10-40% of a non-functional dipodal silane, where the conventional coupling agent provides the appropriate functionality for the application, and the non-functional dipodal silane provides increased durability. Also known as bis-silanes additives enhance hydrolytic stability, which impacts on increased product shelf life, ensures better substrate bonding and also leads to improved mechanical properties in coatings as well as composite applications.<br>1,2-Bis(trimethoxysilyl)decane; 3,3,6,6-Tetramethoxy-4-octyl-2,7-dioxa-3,6-disilaoctane<br>Pendant dipodal silaneEmployed in high pH HPLCEmployed in the fabrication of luminescent molecular thermometers<br></p>
    Formula:C16H38O6Si2
    Purity:97%
    Color and Shape:Liquid
    Molecular weight:382.65

    Ref: 3H-SIB1829.0

    2kg
    To inquire
    100g
    To inquire
  • (3-ACRYLOXYPROPYL)METHYLDIMETHOXYSILANE, tech

    CAS:
    <p>Acrylate Functional Dialkoxysilane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>3-(acryloxypropyl)methyldimethoxysilane, dimethoxymethylsilylpropyl acrylate<br>Employed in fabrication of photoimageable, low shrinkage multimode waveguidesCoupling agent for UV cure systemsUsed in microparticle surface modificationComonomer for free-radical polymerizaitonInhibited with MEHQ<br></p>
    Formula:C9H18O4Si
    Purity:tech
    Color and Shape:Straw Liquid
    Molecular weight:218.33

    Ref: 3H-SIA0198.0

    3kg
    To inquire
    16kg
    To inquire
    250g
    To inquire
  • 1,3-BIS(4-BIPHENYL)-1,1,3,3-TETRAMETHYLDISILAZANE, 95%

    CAS:
    <p>Phenyl-Containing Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>1,3-Bis(4-biphenyl)-1,1,3,3-tetramethyldisilazane<br>Reactivity and stability similar to that of SID4586.0Summary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochure<br></p>
    Formula:C28H31NSi2
    Purity:95%
    Color and Shape:White Solid
    Molecular weight:437.73

    Ref: 3H-SIB1026.4

    10g
    To inquire
  • 1,1,3,3-TETRAMETHYLDISILOXANE, 99%

    CAS:
    Formula:C4H14OSi2
    Purity:99%
    Color and Shape:Liquid
    Molecular weight:134.33

    Ref: 3H-SIT7546.1

    25g
    To inquire
    14kg
    To inquire
    500g
    To inquire
  • ((CHLOROMETHYL)PHENYLETHYL)TRIMETHOXYSILANE

    CAS:
    <p>Halogen Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>((Chloromethyl)phenylethyl)trimethoxysilane; [2-[3(or 4)-(Chloromethyl)phenyl]ethyl]trimethoxysilane; (Trimethoxysilylethyl)benzyl chloride<br>Mixed m-, p- isomersUsed in microparticle surface modificationAdhesion promoter for polyphenylenesulfide and polyimide coatingsEmployed as a high temperature coupling agentDetermined by TGA a 25% weight loss of dried hydrolysates at 495 °CReagent for surface initiated atom-transfer radical-polymerization (ATRP) of N-isopropylacrylamide-butylmethacrylate copolymers<br></p>
    Formula:C12H19ClO3Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:274.82

    Ref: 3H-SIC2295.5

    2kg
    To inquire
    100g
    To inquire
    18kg
    To inquire
  • n-BUTYLDIMETHYLCHLOROSILANE

    CAS:
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Butyldimethylchlorosilane; Butylchlorodimethylsilane; Butyldimethylsilyl chloride; Chlorodimethyl-n-butylsilane<br>Forms bonded phases for HPLC<br></p>
    Formula:C6H15ClSi
    Purity:97%
    Color and Shape:Liquid
    Molecular weight:150.72

    Ref: 3H-SIB1934.0

    2kg
    To inquire
    100g
    To inquire
    14kg
    To inquire
    750g
    To inquire
  • 1,1,1,3,3,3-HEXAMETHYLDISILAZANE, 99%

    CAS:
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Silane Cross-Coupling Agent<br>The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.<br>Trimethylsilyl Blocking Agent<br>Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.<br>ALD Material<br>Atomic layer deposition (ALD) is a chemically self-limiting deposition technique that is based on the sequential use of a gaseous chemical process. A thin film (as fine as -0.1 Å per cycle) results from repeating the deposition sequence as many times as needed to reach a certain thickness. The major characteristic of the films is the resulting conformality and the controlled deposition manner. Precursor selection is key in ALD processes, namely finding molecules which will have enough reactivity to produce the desired films yet are stable enough to be handled and safely delivered to the reaction chamber.<br>1,1,1,3,3,3-Hexamethyldisilazane; HMDS; HMDZ; Bis(trimethylsilyl)amine<br>&lt;5 ppm chlorideStandard grade available, SIH6110.0Viscosity: 0.90 cStΔHcomb: 25,332 kJ/molΔHvap: 34.7 kJ/molDipole moment: 0.37 debyeSurface tension: 18.2 mN/mSpecific wetting surface: 485 m2/gVapor pressure, 50 °: 50 mmpKa: 7.55Photoresist adhesion promoterDielectric constant: 1000 Hz: 2.27Ea, reaction w/SiO2 surface: 73.7 kJ/molVersatile silylation reagentCreates hydrophobic surfacesConverts acid chlorides and alcohols to amines in a three-component reactionReacts with formamide and ketones to form pyrimidinesLithium reagent reacts w/ aryl chlorides or bromides to provide primary anilinesUsed to convert ketones to α-aminophosphonates<br></p>
    Formula:C6H19NSi2
    Purity:99%
    Color and Shape:Colourless Liquid
    Molecular weight:161.39

    Ref: 3H-SIH6110.1

    25g
    To inquire
    14kg
    To inquire
    1.5kg
    To inquire
    150kg
    To inquire
  • VINYLPENTAMETHYLDISILOXANE

    CAS:
    Formula:C7H18OSi2
    Purity:97%
    Color and Shape:Liquid
    Molecular weight:174.39

    Ref: 3H-SIV9090.0

    25g
    To inquire
  • (30-35% TRIETHOXYSILYLETHYL)ETHYLENE-(35-40% 1,4-BUTADIENE)-(25-30% STYRENE) terpolymer, 50% in toluene


    <p>(30-35% Triethoxysilylethyl)ethylene-(35-40% 1,4-butadiene)-(25-30% styrene) terpolymer; (vinyltriethoxysilane)-(1,2-butadiene)-(styrene) terpolymer<br>Multi-functional polymeric trialkoxy silaneHydrophobic modified polybutadiene50% in tolueneViscosity: 20-30 cSt<br></p>
    Color and Shape:Pale Yellow Amber Liquid
    Molecular weight:4500-5500

    Ref: 3H-SSP-255

    100g
    To inquire
  • HEXADECYLTRIETHOXYSILANE, 92%

    CAS:
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Hexadecyltriethoxysilane; Triethoxysilylhexadecane; Cetyltriethoxysilane<br>Trialkoxy silane<br></p>
    Formula:C22H48O3Si
    Purity:92%
    Color and Shape:Straw Liquid
    Molecular weight:388.71

    Ref: 3H-SIH5922.0

    100g
    To inquire
    15kg
    To inquire
  • n-OCTADECYLTRICHLOROSILANE, 97%

    CAS:
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Octadecyltrichlorosilane; OTS; Trichlorosilyloctadecane; Trichlorooctadecylsilane<br>Contains &lt;5% C18 isomersProvides lipophilic surface coatingsEmployed in patterning and printing of electroactive molecular filmsImmobilizes physiologically active cell organellesTreated substrates increase electron transport of pentacene filmsHighest concentration of terminal silane substitution<br></p>
    Formula:C18H37Cl3Si
    Purity:97% including isomers
    Color and Shape:Straw Liquid
    Molecular weight:387.93

    Ref: 3H-SIO6640.1

    2kg
    To inquire
    100g
    To inquire
    15kg
    To inquire
    750g
    To inquire
  • n-OCTYLTRICHLOROSILANE

    CAS:
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Octyltrichlorosilane; Trichlorosilyloctane; Trichlorooctylsilane<br>Vapor pressure, 125 °C: 1 mmSiO2 surface modification improves pentacene organic electronic performance<br></p>
    Formula:C8H17Cl3Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:247.67

    Ref: 3H-SIO6713.0

    2kg
    To inquire
    18kg
    To inquire
    210kg
    To inquire
  • TRIETHOXYSILYLBUTYRALDEHYDE, tech

    CAS:
    <p>Aldehyde Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Triethoxysilylbutyraldehyde; Triethoxysilylbutanal<br>Coupling agent for chitosan to titaniumContains 3-triethoxysilyl-2-methylpropanal isomer and cyclic siloxy acetal, 2,2,6-triethoxy-1-oxa-2-silacyclohexane<br></p>
    Formula:C10H22O4Si
    Purity:85%
    Color and Shape:Straw Liquid
    Molecular weight:234.37

    Ref: 3H-SIT8185.3

    10g
    1,238.00€
  • N-(TRIMETHOXYSILYLPROPYL)ETHYLENEDIAMINETRIACETATE, TRIPOTASSIUM SALT, 30% in water

    CAS:
    <p>N-(Trimethoxysilylpropyl)ethylenediaminetriacetate, tripotassium salt; trihydroxysilylpropyl edta, potassium salt; glycine, N-[2- [bis(carboxymethyl)-aminoethyl]-N-[3-(trihydroxysilyl)propyl-, potassium salt<br>Carboxylate functional trialkoxyl silaneEssentially silanetriol, contains KClChelates metal ions30% in water<br></p>
    Formula:C14H25K3N2O9Si
    Color and Shape:Liquid
    Molecular weight:510.75

    Ref: 3H-SIT8401.0

    25g
    To inquire
  • N-n-BUTYL-AZA-SILACYCLOPENTANE

    CAS:
    Formula:C7H17NSi
    Purity:95%
    Color and Shape:Colourless Clear Liquid
    Molecular weight:143.3

    Ref: 3H-SIB1932.46

    10g
    To inquire
  • n-BUTYLTRIMETHOXYSILANE

    CAS:
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Butyltrimethoxysilane; Trimethoxysilylbutane<br></p>
    Formula:C7H18O3Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:178.3

    Ref: 3H-SIB1988.0

    2kg
    To inquire
    16kg
    To inquire
  • PHENYLTRIMETHOXYSILANE

    CAS:
    <p>Arylsilane Cross-Coupling Agent<br>The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.<br>Aromatic Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Phenyltrimethoxysilane, Trimethoxysilylbenzene<br>Viscosity, 25 °C: 2.1 cStVapor pressure, 108 °: 20 mmDipole moment: 1.77Dielectric constant: 4.44Cross-couples w/ aryl bromides w/o fluoride and w/ NaOHHigh yields w/ Pd and carbene ligandsCross-coupled in presence of aryl aldehydeUndergoes 1,4-addition to enones 1,2- and 1,4-addition to aldehydeUndergoes coupling and asymmetric coupling w/ α-bromoestersReacts with 2° amines to give anilinesN-arylates nitrogen heterocyclesCross-coupled w/ alkynyl bromides and iodidesUsed with p-aminophenyltrimethoxysilane, SIA0599.1 , to increase the dispersibility of mesoporous silicaIntermediate for high temperature silicone resinsHydrophobic additive to other silanes with excellent thermal stabilityCross couples with aryl halidesPhenylates heteroaromatic carboxamidesDirectly couples with primary alkyl bromides and iodidesConverts carboxylic acids to phenyl esters and vinyl carboxylatesConverts arylselenyl bromides to arylphenylselenidesReacts with anhydrides to form the mixed diester, phenyl and methoxy transferUsed in nickel-catalyzed direct phenylation of C-H bonds in heteroaromatic systems, benzoxazolesImmobilization reagent for aligned metallic single wall nanotubes (SWNT)High purity grade available, SIP6822.1Extensive review of silicon based cross-coupling agents: Denmark, S. E. et al. "Organic Reactions, Volume 75" Denmark, S. E. ed., John Wiley and Sons, 233, 2011<br></p>
    Formula:C9H14O3Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:198.29

    Ref: 3H-SIP6822.0

    2kg
    To inquire
    100g
    To inquire
    18kg
    To inquire
    200kg
    To inquire
  • BIS(TRICHLOROSILYL)METHANE

    CAS:
    Formula:CH2Cl6Si2
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:282.9

    Ref: 3H-SIB1813.0

    100g
    To inquire
  • STYRYLETHYLTRIMETHOXYSILANE, tech

    CAS:
    <p>Olefin Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Styrylethyltrimethoxysilane; m,p-Vinylphenethyltrimethoxysilane; m,p-triethoxysilylethylstyrene<br>Copolymerization parameter, e,Q: -0.880, 1.500Comonomer for polyolefin polymerizationUsed in microparticle surface modificationInhibited with t-butyl catecholMixed m-, p-isomers and α-, β-isomersAdhesion promoter for Pt-cure siliconesContains ethylphenethyltrimethoxysilane<br></p>
    Formula:C13H20O3Si
    Purity:92%
    Color and Shape:Straw Liquid
    Molecular weight:252.38

    Ref: 3H-SIS6990.0

    2kg
    To inquire
    50g
    To inquire
  • Ref: 3H-SIM6519.2

    1kg
    To inquire
    18kg
    To inquire
  • NONAFLUOROHEXYLTRIETHOXYSILANE

    CAS:
    <p>Fluoroalkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Nonafluorohexyltriethoxysilane; (Perfluorobutyl)ethyltriethoxysilane<br>Critical surface tension, treated surface: 23 mN/mOleophobic, hydrophobic surface treatmentTrialkoxy silane<br></p>
    Formula:C12H19F9O3Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:410.35

    Ref: 3H-SIN6597.65

    100g
    To inquire
    20kg
    To inquire
    2.5kg
    To inquire
  • 3-AMINOPROPYLMETHYLDIETHOXYSILANE

    CAS:
    <p>Monoamino Functional Dialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>3-Aminopropylmethyldiethoxysilane, 3-(diethoxymethylsilyl)propylamine<br>Primary amine coupling agent for UV cure and epoxy systemsUsed in microparticle surface modificationUsed in foundry resins: phenolic novolaks and resolsVapor phase deposition &gt;150 °C on silica yields high density amine functionality<br></p>
    Formula:C8H21NO2Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:191.34

    Ref: 3H-SIA0605.0

    25g
    To inquire
    2kg
    To inquire
    15kg
    To inquire
    180kg
    To inquire
  • [HYDROXY(POLYETHYLENEOXY)PROPYL]TRIETHOXYSILANE, (8-12 EO), 50% in ethanol

    CAS:
    <p>Tipped PEG Silane (575-750 g/mol)<br>PEO, Hydroxyl, Triethoxysilane termination utilized for hydrophilic surface modificationDual functional PEGylation reagentHydroxylic silane<br>Related Products<br>SIA0078.0: 2-[ACETOXY(POLYETHYLENEOXY)PROPYL] TRIETHOXYSILANE, 95%SIH6185.0: 3-[HYDROXY(POLYETHYLENEOXY)PROPYL] HEPTAMETHYLTRISILOXANE, 90%<br></p>
    Formula:CH3O(C2H4O)6-9(CH2)3Si(OCH3)3
    Color and Shape:Straw Liquid
    Molecular weight:575-750

    Ref: 3H-SIH6188.0

    25g
    To inquire
  • n-OCTADECYLDIMETHYL(DIMETHYLAMINO)SILANE

    CAS:
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Octadecyldimethyl(dimethylamino)silane; (Dimethylamino)dimethyl(octadecyl)silane; N,N,1,1-Tetramethyl-1-octadecylsilanamine; N,N,1,1-Tetramethyl-1-octadecylsilanamine; (N,N-Dimethylamino)dimethyloctadecylsilane; (N,N-Dimethylamino)octadecyldimethylsilane<br>Contains 5-10% C18 isomersEmployed in bonded HPLC reverse phases<br></p>
    Formula:C22H49NSi
    Purity:97% including isomers
    Color and Shape:Straw Liquid
    Molecular weight:355.72

    Ref: 3H-SIO6617.0

    2kg
    To inquire
  • n-OCTADECYLDIMETHYLCHLOROSILANE, 97%

    CAS:
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Octadecyldimethylchlorosilane; Dimethyl-n-octadecylchlorosilane; Chlorodimethyloctadecylsilane; Chlorodimethylsilyl-n-octadecane<br>Contains &lt;5% C18 isomersEmployed in bonded HPLC reverse phases<br></p>
    Formula:C20H43ClSi
    Purity:97% including isomers
    Color and Shape:Off-White Solid
    Molecular weight:347.1

    Ref: 3H-SIO6615.1

    2kg
    To inquire
    10kg
    To inquire
    750g
    To inquire
  • (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)METHYLDICHLOROSILANE

    CAS:
    Formula:C9H7Cl2F13Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:461.12

    Ref: 3H-SIT8172.0

    50g
    To inquire
  • (HEPTADECAFLUORO-1,1,2,2-TETRAHYDRODECYL)METHYLDICHLOROSILANE

    CAS:
    <p>Fluorinated Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>(Heptadecafluoro-1,1,2,2-tetrahydrodecyl)methyldichlorosilane; (1H,1H,2H,2H-Perfluorodecyl)methyldichlorosilane<br>Packaged over copper powder<br></p>
    Formula:C11H7Cl2F17Si
    Purity:97%
    Color and Shape:Straw Off-White Liquid
    Molecular weight:561.14

    Ref: 3H-SIH5840.6

    25g
    To inquire
  • 3-AMINOPROPYLTRIMETHOXYSILANE, 99%

    CAS:
    <p>Monoamine Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>3-Aminopropyltrimethoxysilane, Trimethoxysilylpropylamine, APTES, AMEO, GAPS, A-1100, ?-Aminopropyltrimethoxysilane<br>Vapor pressure, 67 °: 5 mmSuperior reactivity in vapor phase and non-aqueous surface treatmentsSuperior reactivity in vapor phase and non-aqueous surface treatmentsHydrolysis rate vs SIA0610.0 : 6:1Used to immobilize Cu and Zn Schiff base precatalysts for formation of cyclic carbonatesUsed in microparticle surface modification Standard grade available as SIA0611.0<br></p>
    Formula:C6H17NO3Si
    Purity:99%
    Color and Shape:Straw Liquid
    Molecular weight:179.29

    Ref: 3H-SIA0611.1

    25g
    To inquire
    100g
    To inquire
  • TETRAKIS(TRIMETHYLSILOXY)TITANIUM

    CAS:
    Formula:C12H36O4Si4Ti
    Purity:97%
    Color and Shape:Pale Yellow Liquid
    Molecular weight:404.66

    Ref: 3H-SIT7305.0

    25g
    To inquire
  • 2-(3,4-EPOXYCYCLOHEXYL)ETHYLTRIMETHOXYSILANE

    CAS:
    <p>2-(3,4-Epoxycyclohexyl)ethyltrimethoxysilane; (2-trimethoxysilylethyl)cyclohexyloxirane<br>Epoxy functional trialkoxy silaneViscosity: 5.2 cStCoefficient of thermal expansion: 0.8 x 10-3Vapor pressure, 152 °C: 10 mmSpecific wetting surface: 317 m2/gγc of treated surfaces: 39.5 mN/mRing epoxide more reactive than glycidoxypropyl systemsUV initiated polymerization of epoxy group with weak acid donorsForms UV-curable coating resins by controlled hydrolysisUsed to make epoxy-organosilica particles w/ high positive Zeta potentialEpoxy silane treated surfaces convert to hydrophilic-diols when exposed to moisture<br></p>
    Formula:C11H22O4Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:246.38

    Ref: 3H-SIE4670.0

    2kg
    To inquire
    18kg
    To inquire
    200kg
    To inquire
  • 3-MERCAPTOPROPYLMETHYLDIMETHOXYSILANE, 96%

    CAS:
    <p>3-Mercaptopropylmethyldimethoxysilane; 3-(methyldimethoxysilyl)propylmercaptan; dimethoxy(3-mercaptopropyl)methylsilane; dimethoxymethyl(3-mercaptopropyl)silane<br>Sulfur functional dialkoxy silaneIntermediate for silicones in thiol-ene UV-cure systemsAdhesion promoter for polysulfide sealantsUsed to make thiol-organosilica nanoparticles<br></p>
    Formula:C6H16O2SSi
    Purity:96%
    Color and Shape:Straw Liquid
    Molecular weight:180.34

    Ref: 3H-SIM6474.0

    2kg
    To inquire
    18kg
    To inquire
    180kg
    To inquire
  • BIS(3-TRIETHOXYSILYLPROPYL)AMINE, 95%

    CAS:
    <p>Bis(3-triethoxysilylpropyl)amine<br>Amine functional dipodal silaneViscosity: 5.5 cStCoupling agent for polyamides with improved hydrolytic stabilityAdhesion promoter, crosslinking agent for hot melt adhesivesAdhesion promoter for aluminum-polyester multilayer laminatesAdhesion promoter, crosslinker for 2-part condensation cure siliconesCyclic analog: SIT8187.2 Advanced silane in SIVATE A610 and SIVATE E610<br></p>
    Formula:C18H43NO6Si2
    Purity:95%
    Color and Shape:Straw Liquid
    Molecular weight:425.71

    Ref: 3H-SIB1824.5

    2kg
    To inquire
    18kg
    To inquire
    180kg
    To inquire
  • 3-CYANOPROPYLMETHYLDIMETHOXYSILANE

    CAS:
    Formula:C7H15NO2Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:173.29

    Ref: 3H-SIC2453.5

    25g
    To inquire
  • METHACRYLOXYPROPYLTRIETHOXYSILANE

    CAS:
    <p>Methacrylate Functional Trialkoxy Silane<br>Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.<br>Methacryloxypropyltriethoxysilane<br>Coupling agent for radical cure polymer systems and UV cure systemsUsed in microparticle surface modificationComonomer for free-radical polymerizaitonInhibited with MEHQ<br></p>
    Formula:C13H26O5Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:290.43

    Ref: 3H-SIM6487.3

    2kg
    To inquire
    16kg
    To inquire
  • N-METHYL-AZA-2,2,4-TRIMETHYLSILACYCLOPENTANE

    CAS:
    <p>N-methyl-aza-2,2,4-trimethylsilacyclopentane<br>Amine functional silane coupling agentNon-cross-linking cyclic azasilaneEmployed in vapor phase modification of nanoparticles<br></p>
    Formula:C7H17NSi
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:143.3

    Ref: 3H-SIM6501.4

    2kg
    To inquire
    16kg
    To inquire
    160kg
    To inquire
  • METHYLTRICHLOROSILANE, 98% CYLINDER

    CAS:
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>Methyltrichlorosilane; Trichloromethylsilane; Trichlorosilylmethane<br>Viscosity: 0.46 cStΔHvap: 31.0 kJ/molSurface tension: 20.3 mN/mIonization potential: 11.36 eVSpecific heat: 0.92 J/g/°Vapor pressure, 13.5 °C: 100 mmCritical temperature: 243 °CCritical pressure: 39 atmCoefficient of thermal expansion: 1.3 x 10-3Fundamental builing-block for silicone resinsForms silicon carbide by pyrolysisIn a synergistic fashion with boron trifluoride etherate catalyzes the crossed imino aldehyde pinacol couplingHigher purity grade available, SIM6520.1<br></p>
    Formula:CH3Cl3Si
    Purity:98%
    Color and Shape:Straw Liquid
    Molecular weight:149.48

    Ref: 3H-SIM6520.0

    dr
    To inquire
    4kg
    To inquire
    cyl
    To inquire
    20kg
    To inquire
    500g
    202.00€
  • n-PROPYLDIMETHYLCHLOROSILANE

    CAS:
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Propyldimethylchlorosilane; Chlorodimethyl-n-propylsilane<br></p>
    Formula:C5H13ClSi
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:136.7

    Ref: 3H-SIP6910.0

    100g
    To inquire
  • PHENYLSILANE

    CAS:
    <p>Mono-substituted Silane Reducing Agent<br>Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure.<br>Trihydridosilane<br>Silyl Hydrides are a distinct class of silanes that behave and react very differently than conventional silane coupling agents. They react with the liberation of byproduct hydrogen. Silyl hydrides can react with hydroxylic surfaces under both non-catalyzed and catalyzed conditions by a dehydrogenative coupling mechanism. Trihydridosilanes react with a variety of pure metal surfaces including gold, titanium, zirconium and amorphous silicon, by a dissociative adsorption mechanism. The reactions generally take place at room temperature and can be conducted in the vapor phase or with the pure silane or solutions of the silane in aprotic solvents. Deposition should not be conducted in water, alcohol or protic solvents.<br>Phenylsilane; Silylbenzene<br>ΔHvap: 34.8 kJ/molEmployed in the reduction of esters to ethersReduces α,β-unsaturated ketones to saturated ketones in the presence of tri-n-butyltin hydrideReduces tin amides to tin hydridesUsed in the tin-catalyzed reduction of nitroalkanes to alkanesReduces α-halo ketones in presence of Mo(0)Adds to norbornene with high eeReducing reagent in radical reductionsYields ISiH3 on treatments with HI in presence of AlI3Extensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007<br></p>
    Formula:C6H8Si
    Purity:97%
    Color and Shape:Liquid
    Molecular weight:108.21

    Ref: 3H-SIP6750.0

    15kg
    To inquire
  • n-OCTADECYLMETHYLDICHLOROSILANE

    CAS:
    <p>Alkyl Silane - Conventional Surface Bonding<br>Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.<br>n-Octadecylmethyldichlorosilane; Dichloromethyl-n-octadecylsilane; Methyldichlorosilyloctadecane; Dichloromethylsilyloctadecane<br>Contains 5-10% C18 isomersViscosity: 7 cSt<br></p>
    Formula:C19H40Cl2Si
    Purity:97% including isomers
    Color and Shape:Straw Liquid
    Molecular weight:367.52

    Ref: 3H-SIO6625.0

    16kg
    To inquire
    500g
    To inquire
    3.5kg
    To inquire
  • TETRACHLOROSILANE, 99.99+%

    CAS:
    Formula:Cl4Sn
    Purity:99.99%
    Color and Shape:Straw Liquid
    Molecular weight:169.9

    Ref: 3H-SIT7085.1

    5kg
    To inquire
  • BIS(CHLOROMETHYL)DIMETHYLSILANE

    CAS:
    Formula:C4H10Cl2Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:157.11

    Ref: 3H-SIB1051.0

    2kg
    To inquire
    750g
    To inquire
  • 3-CYANOPROPYLDIISOPROPYL(DIMETHYLAMINO)SILANE

    CAS:
    Formula:C12H26N2Si
    Purity:97%
    Color and Shape:Straw Liquid
    Molecular weight:226.44

    Ref: 3H-SIC2451.0

    100g
    To inquire