
Silanes
Subcategories of "Silanes"
Found 1234 products of "Silanes"
1,3-DIALLYLTETRAMETHYLDISILOXANE, tech
CAS:Formula:C10H22OSi2Purity:techColor and Shape:LiquidMolecular weight:214.45n-PROPYLTRICHLOROSILANE
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
n-Propyltrichlorosilane; Trichloropropylsilane
ΔHvap: 36.4 kJ/molVapor pressure, 16 °C: 10 mmFormula:C3H7Cl3SiPurity:97%Color and Shape:Straw LiquidMolecular weight:177.53N-n-BUTYL-AZA-2,2-DIMETHOXYSILACYCLOPENTANE
CAS:N-n-Butyl-aza-2,2-dimethoxysilacyclopentane
Amine functional dialkoxy silaneCross-linking cyclic azasilaneCoupling agent for nanoparticlesInterlayer bonding agent for anti-reflective lensesConventional analog available: SIB1932.2Formula:C9H21NO2SiPurity:97%Color and Shape:Straw LiquidMolecular weight:203.36ETHYLTRIMETHOXYSILANE
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Ethyltrimethoxysilane; Trimethoxysilylethane; Trimethoxyethylsilane
Viscosity: 0.5 cStΔHcomb: 14,336 kJ/molDevelops clear resin coating systems more readily than methyltrimethoxysilaneTrialkoxy silaneFormula:C5H14O3SiPurity:97%Color and Shape:LiquidMolecular weight:150.253-PHENOXYPROPYLDIMETHYLCHLOROSILANE
CAS:Aromatic Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
3-Phenoxypropyldimethylchlorosilane; (3-Dimethylchlorosilylpropoxy)benzeneFormula:C11H17ClOSiPurity:97%Color and Shape:Pale Yellow LiquidMolecular weight:228.78BIS[m-(2-TRIETHOXYSILYLETHYL)TOLYL]POLYSULFIDE
CAS:Bis[m-(2-triethoxysilylethyl)tolyl]polysulfide
Sulfur functional dipodal silaneDark, viscous liquid Coupling agent for styrene-butadiene rubber, SBRFormula:C30H50O6S(2-4)Si2Purity:85%Color and Shape:Dark LiquidMolecular weight:627-691(HEPTADECAFLUORO-1,1,2,2-TETRAHYDRODECYL)TRIMETHOXYSILANE
CAS:Fluorinated Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
(Heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane; (1H,1H,2H,2H-Perfluorodecyl)trimethoxysilane; Heptadecafluorodecyltrimethoxysilane
Packaged over copper powderTreated surface contact angle, water: 115 °Cγc of treated surfaces: 12 mN/mSurface modification of titanium and silica substrates reduces coefficient of frictionForms inorganic hybrids with photoinduceable refractive index reductionTrialkoxy silaneFormula:C13H13F17O3SiPurity:97%Color and Shape:Straw LiquidMolecular weight:568.33-[METHOXY(POLYETHYLENEOXY)6-9]PROPYLTRIMETHOXYSILANE, tech
CAS:Tipped PEG Silane (459-591 g/mol)
Methoxy-PEG-9C3-silanePEO, Trimethoxysilane termination utilized for hydrophilic surface modificationForms charge neutral coatings on CdSe quantum dots which conjugate DNAPEGylation reagentReduces non-specific binding of proteinsHydrogen bonding hydrophilic silaneFormula:CH3O(C2H4O)6-9(CH2)3Si(OCH3)3Color and Shape:Clear Yellow To Amber LiquidMolecular weight:459-591N-(2-AMINOETHYL)-3-AMINOPROPYLTRIMETHOXYSILANE, tech
CAS:Diamino Functional Trialkoxy Silane
Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials.
N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane; N-[3-(Trimethoxysilyl)propyl]ethylenediamine; DAMO
For higher purity see SIA0591.1 Viscosity: 6.5 cStγc of treated surfaces: 36.5 mN/mSpecific wetting surface: 358 m2/gCoefficient of thermal expansion: 0.8x10-3Coupling agent for polyamides, polycarbonates (e.g. in CDs), polyesters and copper/brass adhesionFilm-forming coupling agent/primer, berglass size componentFor cyclic version: SID3543.0 For pre-hydrolyzed version: SIA0590.0 Used in the immobilization of copper (II) catalyst on silicaUsed together w/ SID3396.0 to anchor PdCl2 catalyst to silica for acceleration of the Tsuji-Trost reaction in the allylation of nucleophilesDetermined by TGA a 25% weight loss of dried hydrolysates at 390 °CAvailable as a cohydrolysate with n-propyltrimethoxysilane (SIP6918.0) ; see SIA0591.3Formula:C8H22N2O3SiPurity:techColor and Shape:Straw LiquidMolecular weight:222.363-CYANOPROPYLTRIMETHOXYSILANE
CAS:Formula:C7H15NO3SiPurity:97%Color and Shape:Straw LiquidMolecular weight:189.29TRIACONTYLDIMETHYLCHLOROSILANE, blend
CAS:Formula:C32H67ClSiColor and Shape:SolidMolecular weight:515.42n-PROPYLDIMETHYLMETHOXYSILANE
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
n-Propyldimethylmethoxysilane; Methoxypropyldimethylsilane
Monoalkoxy silaneFormula:C6H16OSiPurity:97%Color and Shape:LiquidMolecular weight:132.28t-BUTYLDIMETHYLSILYLTRIFLUOROMETHANESULFONATE
CAS:Trialkylsilyl Blocking Agent
Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.
tert-Butyldimethylsilyltrifluoromethanesulfonate; TBS-OTf; t-Butyldimethylsilyltriflate
More reactive than SIB1935.0Converts acetates to TBS ethersUsed for the protection of alcohols, amines, thiols, lactams, and carboxylic acidsClean NMR characteristics of protecting groupFacile removal with flouride ion sourcesSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochureFormula:C7H15F3O3SSiColor and Shape:Straw LiquidMolecular weight:264.33TRIMETHYLETHOXYSILANE
CAS:Formula:C5H14OSiPurity:97%Color and Shape:Clear To Straw LiquidMolecular weight:118.25ETHYLTRICHLOROSILANE
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Ethyltrichlorosilane; Trichloroethylsilane
Viscosity: 0.48 cStΔHcomb: -2,696 kJ/molΔHform: -84 kJ/molΔHvap: 37.7 kJ/molΔHfus: 7.0 kJ/molDipole moment: 2.1Vapor pressure, 20 °C: 26 mmVapor pressure, 30.4 °C: 66 mmCritical temperature: 287 °CCoefficient of thermal expansion: 1.5 x 10-3Employed in the cobalt-catalyzed Diels-Alder approach to 1,3-disubstituted and 1,2,3-trisubstituted benzenesFormula:C2H5Cl3SiPurity:97%Color and Shape:Straw LiquidMolecular weight:163.512-(4-CHLOROSULFONYLPHENYL)ETHYLTRICHLOROSILANE, 50% in toluene
CAS:Formula:C8H8Cl4O2SSiColor and Shape:Straw Amber LiquidMolecular weight:338.11PHENYLDIMETHYLCHLOROSILANE
CAS:Phenyl-Containing Blocking Agent
Used as a protecting group for reactive hydrogens in alcohols, amines, thiols, and carboxylic acids. Organosilanes are hydrogen-like, can be introduced in high yield, and can be removed under selective conditions. They are stable over a wide range of reaction conditions and can be removed in the presence of other functional groups, including other protecting groups. The tolerance of silylated alcohols to chemical transformations summary is presented in Table 1 of the Silicon-Based Blocking Agents brochure.
Aromatic Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Phenyldimethylchlorosilane; Chlorodimethylphenylsilane; Dimethylphenylchlorosilane
Viscosity: 1.4 cStΔHvap: 47.7 kJ/molVapor pressure, 25 °: 1 mmForms cuprateUsed in analytical proceduresSummary of selective deprotection conditions is provided in Table 7 through Table 20 of the Silicon-Based Blocking Agents brochureFormula:C8H11ClSiPurity:97%Color and Shape:Straw LiquidMolecular weight:170.711,3,5-TRIISOPROPYLCYCLOTRISILAZANE
CAS:Formula:C9H27N3Si3Purity:95%Color and Shape:LiquidMolecular weight:261.59HEXYLTRIMETHOXYSILANE
CAS:Alkyl Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Hexyltrimethoxysilane; Trimethoxyhexylsilane; Trimethoxysilylhexane
Surface modification of TiO2 pigments improves dispersionTrialkoxy silaneFormula:C9H22O3SiPurity:97%Color and Shape:Straw LiquidMolecular weight:206.35
