
Carboxylic Acids
Carboxylic acids are organic molecules characterized by having a carboxyl-type functional group (-COOH). These acids are fundamental in various chemical reactions, including esterification, amidation, and decarboxylation. Carboxylic acids are widely used in the production of pharmaceuticals, polymers, and agrochemicals. In this section, you can find a large number of carboxylic acids ready to be used. At CymitQuimica, we provide a broad range of high-quality carboxylic acids to support your research and industrial applications.
Found 12453 products of "Carboxylic Acids"
Sort by
Purity (%)
0
100
|
0
|
50
|
90
|
95
|
100
Theophylline-7-acetic acid
CAS:Controlled Product<p>Theophylline-7-acetic acid is a substance that has the chemical name of 2-amino-5-(1,3-dimethylxanthin-9-yl)benzoic acid. It is an amorphous substance with a biochemical property of being soluble in water and ethanol. Theophylline-7-acetic acid is used as a reagent for the quantitative determination of cardiac glycosides in human serum. This compound also reacts with a solution of sodium salts under constant pressure at room temperature and an electrochemical detector to yield an intense blue fluorescence. Structural analysis indicates that this substance contains a hydroxyl group, which can be found in proteins, fatty acids, and pharmacokinetics.</p>Formula:C9H10N4O4Purity:Min. 95%Color and Shape:PowderMolecular weight:238.2 g/molResveratrol triacetate
CAS:<p>Resveratrol is a natural phenol that has been shown to have anticancer and anti-inflammatory properties. Resveratrol triacetate is an acetylated form of resveratrol that has a greater stability than resveratrol and may be more bioavailable. Resveratrol triacetate has been shown to inhibit the proliferation of skin cells, muscle cells, and bronchial cells in vitro. Resveratrol triacetate also decreases the production of pro-inflammatory cytokines in macrophages, which are white blood cells involved in the inflammatory response. Resveratrol triacetate inhibits the expression of genes that lead to inflammation and cancer development by binding to nuclear receptors, which are proteins found on the surface of cells that bind specific molecules such as hormones or drugs.</p>Formula:C20H18O6Purity:Min. 95%Color and Shape:PowderMolecular weight:354.35 g/mol(1R,4R)-tert-Butyl 2,5-diazabicyclo[2.2.1]heptane-2-carboxylate hydrochloride
CAS:<p>Tert-Butyl 2,5-diazabicyclo[2.2.1]heptane-2-carboxylate hydrochloride (TBDAHC) is a fine chemical that is an intermediate for the synthesis of other compounds. TBDAHC is a versatile building block that can be used in research chemicals, reaction components, and specialty chemicals. It is also a useful scaffold for making complex compounds and useful building blocks. The compound has high quality and can be used as a reagent in organic chemistry.</p>Formula:C10H18N2O2·HClPurity:Min. 95%Color and Shape:White PowderMolecular weight:234.72 g/mol2-Bromo-5-methylbenzoic acid
CAS:<p>2-Bromo-5-methylbenzoic acid is an organic compound that can be synthesized in the laboratory. It is used as a starting material for synthesis of various quinazolinones, which are ionic liquid catalysts. 2-Bromo-5-methylbenzoic acid has also been shown to inhibit ethylene production from glycols and to act as a potential catalyst for the conversion of trifluoromethane into ionic liquids. The synthesis of 2-bromo-5-methylbenzoic acid is not well documented, but it can be made by reacting methyl bromide with benzaldehyde or acetone in the presence of sodium hydroxide or potassium hydroxide. This reaction produces bromobenzene, which reacts with phosphorus pentachloride to produce 2-bromo-5-methylbenzoic acid.</p>Formula:C8H7BrO2Purity:Min. 95%Color and Shape:PowderMolecular weight:215.04 g/molDiatrizoic acid dihydrate
CAS:<p>Diatrizoic acid dihydrate is a compound that has been used in the past for the detection of bladder cancer and urethral carcinoma. It is most often administered by intravesical instillation, postoperatively after pyelography, or prophylactically to prevent recurrence following surgery for bladder cancer. Diatrizoic acid dihydrate is an oxidant agent with high reactivity to nucleic acids. When it reacts with viral DNA, it causes a break in the DNA chain at the site of contact, resulting in cell death. The compound also reacts with DNA in bacteria and human cells, causing a change in the configuration of the molecule and leading to cell death. Diatrizoic acid dihydrate can be used as a treatment for subgroups C and D of virus-induced cystitis in animals, but it does not work against other types of cystitis viruses. Diatrizoic acid dihydrate is also</p>Formula:C11H9I3N2O4·2H2OPurity:Min. 95%Color and Shape:White PowderMolecular weight:649.94 g/mol3,4-Dimethoxyphenylacetic acid
CAS:3,4-Dimethoxyphenylacetic acid is an aromatic acid that has antimicrobial properties. It is used as a food additive for the preservation of meat and poultry. The 3,4-dimethoxyphenyl group in this molecule is an intramolecular hydrogen acceptor. This property allows it to undergo transfer reactions with other molecules, such as protocatechuic acid and lignin. 3,4-Dimethoxyphenylacetic acid also inhibits cellular physiology and can be used in the treatment of bacteria in biological systems. The hydroxyl group can form an acidic compound by reacting with a proton donor, such as water or trifluoroacetic acid (TFA). This reaction may be catalyzed by the enzyme cytochrome P450 reductase.Formula:C10H12O4Purity:Min. 95%Color and Shape:White PowderMolecular weight:196.2 g/molMethyl 2-(aminomethyl)pyridine-4-carboxylate HCl
CAS:<p>Methyl 2-(aminomethyl)pyridine-4-carboxylate HCl is a fine chemical that is used as a building block, reagent, and speciality chemical. It has been shown to be an effective intermediate in the synthesis of complex compounds. Methyl 2-(aminomethyl)pyridine-4-carboxylate HCl also has a versatile scaffold for organic synthesis.</p>Formula:C8H11ClN2O2Purity:Min. 95%Color and Shape:PowderMolecular weight:202.64 g/mol4'-Trifluoromethyl-biphenyl-4-carboxylic acid
CAS:<p>4'-Trifluoromethyl-biphenyl-4-carboxylic acid is a versatile building block that is used in the synthesis of complex compounds. It is also a useful reagent, intermediate, and scaffold for organic reactions. The chemical's CAS number is 195457-71-7. This product has a high quality and can be used as a research chemical or speciality chemical.</p>Formula:C14H9F3O2Purity:Min. 95%Color and Shape:PowderMolecular weight:266.22 g/molβ-(3-Aminophenyl)propionic acid hydrochloride
CAS:<p>Beta- (3-aminophenyl)propionic acid hydrochloride is a drug that belongs to the class of pharmaceuticals and is used as a gastric antacid. It has been shown to be effective in treating acute and chronic gastritis, as well as ulcers in humans. Beta-(3-aminophenyl)propionic acid hydrochloride has been shown to have strong effects on tissues, membranes, and chlorides. The drug binds to hydrogen chloride and chlorine ions in the stomach, thereby preventing the formation of hydrochloric acid (HCL). This prevents the damage caused by HCL on tissues and membranes of the stomach. Beta-(3-aminophenyl)propionic acid hydrochloride also has health effects with high concentrations, such as chloroform or chlorine gas.</p>Formula:C9H12ClNO2Purity:Min. 95%Molecular weight:201.65 g/mol6α-Methyl prednisolone 21-acetate
Controlled Product<p>6a-Methyl prednisolone 21-acetate is a corticosteroid that binds to the glucocorticoid receptor, which regulates gene transcription. It has been used as an injection solution for bowel disease, but has also been shown to have anti-inflammatory and immunosuppressive effects. 6a-Methyl prednisolone 21-acetate reduces the production of inflammatory cytokines and may be a useful treatment for patients with inflammatory bowel disease (IBD). 6a-Methyl prednisolone 21-acetate has also been shown to decrease inflammation in experimental models of tissue infection, such as sepsis in mice. This drug may be useful as an adjuvant therapy for the treatment of sepsis in humans. 6a-Methyl prednisolone 21-acetate is not recommended for use in patients with congestive heart failure or severe kidney impairment because it can cause fluid retention and aggravation of these conditions.</p>Formula:C24H32O6Purity:Min. 95%Color and Shape:PowderMolecular weight:416.51 g/molOleic acid-biotin - solution in ethanol
CAS:<p>Oleic acid-biotin is a fine chemical that is used as a versatile building block in the synthesis of complex compounds. It can also be used as a reagent for research purposes, and is a useful building block for the synthesis of various chemicals. Oleic acid-biotin is an intermediate in organic chemistry, and can be used as a reaction component in organic synthesis. It can also act as a scaffold for drug design and development. This product has been shown to have high quality and purity, making it suitable for use in various reactions.</p>Formula:C28H50N4O3SPurity:Min. 95%Color and Shape:Colorless PowderMolecular weight:522.79 g/mol5-Nitrobarbituric acid
CAS:<p>5-Nitrobarbituric acid is an organic acid that is used as a pharmaceutical preparation and can be found in the form of its calcium salt. 5-Nitrobarbituric acid is a weak acid that forms a complex with orthoboric acid, calcium carbonate, copper oxide, and morphologies such as needles or prisms. 5-Nitrobarbituric acid has been used to treat different types of headache. It has also been used to treat stomach aches and pain caused by gastrointestinal ulcers. The mechanism of action for this drug remains unknown, but it may act by inhibiting the uptake of sodium ions into the cells. 5-Nitrobarbituric acid has also been shown to have physiological functions in hydration and triazine synthesis.</p>Formula:C4H3N3O5Purity:Min. 95%Color and Shape:White Off-White PowderMolecular weight:173.08 g/mol6-Methoxy-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid
CAS:<p>6-Methoxy-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (MTN) is a polyphenol that has been shown to be effective against Alzheimer's disease in vitro and in vivo. MTN is able to bind to the polymerase chain reaction (PCR) product of APP and inhibit it from binding to heme oxygenase. MTN also prevents the accumulation of amyloid plaques by inhibiting the formation of beta-amyloid protein. MTN binds to thioflavin T and can be used as a fluorescent probe for immunofluorescence staining. MTN also inhibits the expression levels of APP and PS1 proteins in APP/PS1 transgenic mice by modulating the activity of transcriptional factors such as CREB.</p>Formula:C12H14O3Purity:Min. 95%Color and Shape:PowderMolecular weight:206.24 g/molZinc diethyldithiocarbamate
CAS:<p>Zinc diethyldithiocarbamate is an inorganic compound that has been shown to have potent anti-inflammatory and antipyretic properties. It has been used as a chemical inhibitor of phospholipase A2, which is an enzyme involved in the inflammatory process. Zinc diethyldithiocarbamate also has been shown to be a potent inducer of metallothionein and other proteins that are involved in detoxification processes. This drug has been used as an injection solution for the treatment of infectious diseases such as tuberculosis, leprosy, brucellosis, and malaria. Zinc diethyldithiocarbamate is also used as a pharmacological agent for the treatment of myocardial infarction.</p>Formula:C10H20N2S4ZnPurity:Min. 95%Color and Shape:PowderMolecular weight:361.92 g/molHyodeoxycholic acid
CAS:Controlled Product<p>Hyodeoxycholic acid is a bile acid that is extracted from porcine bile. Hyodeoxycholic acid has been shown to have neurotrophic effects, which are due to its ability to stimulate nerve growth factor (NGF) synthesis.</p>Formula:C24H40O4Purity:Min. 95%Color and Shape:White Off-White PowderMolecular weight:392.57 g/molS-Phenylmercapturic acid
CAS:<p>S-Phenylmercapturic acid is an analytical method that can be used to measure the concentration of guanine nucleotide-binding (GMP) in urine. This assay is a sensitive and specific test for urinary GMP. The linear calibration curve for this assay was determined by plotting the fluorescence intensity of s-phenylmercapturic acid against the concentration of GMP. S-Phenylmercapturic acid has been used as a marker for heart disease, kidney disease, and diabetes mellitus type 2. S-Phenylmercapturic acid also has toxicological studies that show it is not carcinogenic or teratogenic and does not affect fertility or reproduction. The use of s-phenylmercapturic acid as a biomarker for GMP has been validated using matrix effect techniques and solid phase microextraction followed by dispersive solid phase extraction on a column with a fluorescence detector.</p>Formula:C11H13NO3SPurity:Min. 95%Color and Shape:PowderMolecular weight:239.29 g/mol3-Bromo-2-methylbenzoic acid
CAS:<p>3-Bromo-2-methylbenzoic acid is a hydrogen bond donor. Hydrogen bonding may provide an explanation for the functional theory of 3-bromo-2-methylbenzoic acid, which has been shown to have anticancer properties in vitro and in vivo. This compound has been shown to be effective against cancer cells that express PDL1 (programmed cell death protein 1) and is being studied as a potential therapeutic agent for cancers that are resistant to conventional anticancer drugs. 3-Bromo-2-methylbenzoic acid has low solubility in water and is poorly absorbed from the gastrointestinal tract. It also does not bind to plasma proteins, which makes it pharmacologically active even at low doses. 3BBMBA inhibits viral replication by binding to the viral RNA polymerase enzyme, thereby inhibiting transcription and replication of the virus genome. In addition, it inhibits the proliferation of human cancer cells through inhibition of protein synthesis and DNA synthesis</p>Formula:C8H7BrO2Purity:Min. 95%Color and Shape:PowderMolecular weight:215.04 g/mol2,4-Dichlorobenzoic acid
CAS:<p>2,4-Dichlorobenzoic acid is a chemical compound that is commonly used for sample preparation for analytical methods. It is also used as a nutrient in group P2 bacteria. 2,4-Dichlorobenzoic acid has coordination geometry of octahedral with the central atom being surrounded by six ligands. This chemical has hydrogen bonding interactions that are most likely due to the electronegative chlorine atoms.</p>Formula:C7H4Cl2O2Purity:Min. 95%Color and Shape:PowderMolecular weight:191.01 g/molBoc-4-(4-chlorophenyl)-piperidine-4-carboxylic acid
CAS:<p>Boc-4-(4-chlorophenyl)-piperidine-4-carboxylic acid is a versatile building block that can be used to synthesize complex compounds. It is a high quality, research chemical that can be used as a reagent or speciality chemical. Boc-4-(4-chlorophenyl)-piperidine-4-carboxylic acid is an intermediate for the synthesis of pharmacologically active compounds and has been used as a reaction component in the synthesis of other useful scaffolds. CAS No. 644981-94-2</p>Formula:C17H22ClNO4Purity:Min. 95%Color and Shape:White PowderMolecular weight:339.81 g/mol3-Oxo-4-aza-5-α-androstane-17-β-carboxylic acid
CAS:<p>3-Oxo-4-aza-5-alpha-androstane-17-beta-carboxylic acid is a versatile building block that can be used in the preparation of complex molecules. This compound is also a reagent, speciality chemical, and useful intermediate for organic synthesis. 3-Oxo-4-aza-5-alpha-androstane-17 beta carboxylic acid has been shown to be useful as a reaction component and scaffold in organic synthesis.</p>Formula:C19H29NO3Purity:Min. 95%Color and Shape:White Clear LiquidMolecular weight:319.44 g/mol4-Hydroxy-3-methylbenzoic acid
CAS:<p>4-Hydroxy-3-methylbenzoic acid is a metabolite of 4-hydroxybenzoic acid that is found in human blood and serum. It is also a methylated derivative of benzoic acid. This compound is an intermediate in the metabolism of benzoic acid, which can be found in many plants such as cranberries, apples, and oranges.</p>Formula:C8H8O3Color and Shape:PowderMolecular weight:152.15 g/mol3,4,5-Tribromobenzoic acid - technical grade
CAS:<p>3,4,5-Tribromobenzoic acid is a benzoic acid with the molecular formula C6H3Br3O2. It is used as a plant growth regulator in agriculture and gardening. 3,4,5-Tribromobenzoic acid may be applied to the surface of plants to stimulate abscission (the natural shedding of leaves) or excision (the removal of flowers). This chemical also has been shown to inhibit physiological activity in plants by inhibiting 2,3,5-triiodobenzoic acid synthesis. This inhibition leads to a reduction in the production of substances that are involved in physiological processes such as photosynthesis and protein synthesis.</p>Formula:C7H3Br3O2Purity:Min. 95%Molecular weight:358.81 g/mol3,5-Diaminobenzoic acid
CAS:<p>3,5-Diaminobenzoic acid is an amide compound. It can be used to remove caffeine and other organic compounds from wastewater. 3,5-Diaminobenzoic acid is a fluorescent probe that can be used in the detection of water vapor and 2,4-dichlorobenzoic acid in the atmosphere. This chemical is also capable of removing polymerase chain reactions from DNA samples. 3,5-Diaminobenzoic acid has been shown to have water permeability and a high chemical stability. It has a hydrogen bond with diphenyl ether and can undergo transfer reactions with polymaleic acid and mda-mb-231 breast cancer cells.</p>Formula:C7H8N2O2Purity:Min. 95%Color and Shape:White PowderMolecular weight:152.15 g/molReserpiline
CAS:<p>Methyl (3beta,19alpha,20alpha)-16,17-didehydro-10,11-dimethoxy-19-methyloxayohimban-16-carboxylate is a trifluoroacetate ester of apocynin. It is used to treat bowel disease by reducing inflammation and stimulating the growth of new cells in the epithelium. Apocynin has been shown to inhibit the release of inflammatory cytokines such as epidermal growth factor (EGF) in vitro. In vivo studies have shown that it reduces symptoms of bowel disease and prevents ulceration. Apocynin has been shown to be a potent analog for EGF and has been studied for its potential use in the treatment of cancer. However, it has also been found to cause psychosis when administered at high doses. The toxicity studies on apocynin show that it is not toxic at lower doses but becomes more toxic at higher doses due</p>Formula:C23H28N2O5Purity:Min. 95%Color and Shape:PowderMolecular weight:412.48 g/mol2-Phenylindole-5-sulfonic acid monosodium salt
CAS:<p>2-Phenylindole-5-sulfonic acid monosodium salt is a fine chemical that can be used as a building block for research chemicals, reagents, and speciality chemicals. It is also used as a reaction component for the synthesis of various complex compounds, such as pharmaceuticals and dyes. 2-Phenylindole-5-sulfonic acid monosodium salt is a versatile building block that can be used in the synthesis of useful scaffolds. The CAS number for this compound is 119205-39-9.</p>Formula:C14H10NO3S·NaPurity:Min. 95%Color and Shape:White PowderMolecular weight:295.29 g/mol2,6-Bistrifluoromethyl benzoic acid
CAS:<p>2,6-Bistrifluoromethyl benzoic acid is a chiral compound that can be detected in urine samples at high concentrations. The compound can be detected by high-performance liquid chromatography (HPLC) after being derivatized with methyl ester. It has been shown to have a dihedral angle of about 180° and an enantiomeric purity of 99%. The efficient method for the synthesis of 2,6-Bistrifluoromethyl benzoic acid is also described. This method involves the use of a template molecule, which is prepared from 1-phenylethyl alcohol and 4-bromobutyraldehyde. The reaction proceeds smoothly using a solvent such as benzene or toluene in the presence of sodium borohydride. After purification, 2,6-Bistrifluoromethyl benzoic acid is obtained in excellent yield and enantiomerically pure</p>Formula:C9H4F6O2Purity:Min. 95%Color and Shape:White To Light (Or Pale) Yellow SolidMolecular weight:258.12 g/mol4-Aminophenylboronic acid hydrochloride
CAS:<p>4-Aminophenylboronic acid hydrochloride is a fluorescent probe that can be used to detect hydrogen bonds in proteins. It has been used to measure water vapor in human serum and as an electrochemical impedance spectroscopy probe for the detection of ATP levels. This compound has also been used as a fluorescence probe for the detection of viruses and fetal bovine serum, as well as nanomaterials and matrix effect studies. 4-Aminophenylboronic acid hydrochloride is synthesized through the reaction of 4-aminophenylboronic acid with hydrochloric acid in water at high temperature, which produces a white solid. The thermal expansion coefficient of this compound is 2.6 x 10^-5 K^-1.</p>Formula:C6H8BNO2•HClPurity:Min. 95%Color and Shape:PowderMolecular weight:173.4 g/molp-Toluenesulfinic acid
CAS:<p>P-Toluenesulfinic acid is a cyanuric acid that is used in the synthesis of organic compounds. The reaction rate of the process can be varied by changing the reaction temperature, and the use of non-polar solvents provides an efficient method for synthesizing amines. This acid is also used as a catalyst in the synthesis of ethyl esters from chloride and fatty acids. The polymerization kinetics of polymers with this compound are also very fast.</p>Formula:C7H8O2SPurity:Min. 95%Color and Shape:SolidMolecular weight:156.2 g/mol2-Ethoxyphenylacetic acid
CAS:<p>2-Ethoxyphenylacetic acid (2EPA) is a drug that has been used in the treatment of cancer. It is a hydrophobic molecule that can inhibit the activity of various enzymes, such as sildenafil and triazolone. 2EPA has shown to be an antagonist at the active site of quinazolinone, which is a molecule involved in erectile dysfunction. The physicochemical properties of 2EPA have been studied using molecular dynamics simulations and quantum mechanical computations. This drug is able to form hydrophobic interactions with the active site of quinazolinone, which may account for its antagonistic activity.</p>Formula:C10H12O3Purity:90%Color and Shape:PowderMolecular weight:180.2 g/mol5-Bromo-6-chloroindolyl 1,3-diacetate
CAS:<p>5-Bromo-6-chloroindolyl 1,3-diacetate is a versatile building block that can be used in the synthesis of complex compounds. It is a useful intermediate for the synthesis of speciality chemicals with high quality. 5-Bromo-6-chloroindolyl 1,3-diacetate is a reagent and reaction component for research chemicals with CAS No. 108847-96-7. It has a variety of applications in the manufacture of fine chemicals and pharmaceuticals, as well as being a useful scaffold for the production of new compounds.</p>Formula:C12H9BrClNO3Purity:Min. 95%Color and Shape:Off-White PowderMolecular weight:330.57 g/molD-2-Aminobutyric acid
CAS:<p>D-2-Aminobutyric acid is a chemical compound that can act as an antiplatelet agent. It is also a sodium salt that is used in kinetic and gravimetric analysis. D-2-Aminobutyric acid is metabolized by humans, with the 2-aminoisobutyric acid being the most prevalent metabolite. This chemical has been shown to be an inhibitor of matrix metalloproteinase activity and can act as an antioxidant to protect cells from radiation damage. D-2-Aminobutyric acid also inhibits protein synthesis by binding to carbonyl groups on proteins, which prevents them from being oxidized or degraded.</p>Formula:C4H9NO2Purity:Min. 95%Color and Shape:PowderMolecular weight:103.12 g/mol2-Chloro-5-methoxybenzoic acid
CAS:<p>2-Chloro-5-methoxybenzoic acid (2CMB) is a copper chelator that has been shown to have antagonistic properties against microglia cells. 2CMB is synthesized from 2,5-dichlorobenzoic acid and methoxylamine. It has been shown to inhibit the synthesis of inflammatory mediators in rat spinal cord microglia cells by inhibiting the activity of polyphosphoric acid, anions and additives. 2CMB also has a high affinity for chloride ions and can be used as a tracer to measure chloride profiles. 2CMB reacts with copper ions at a slow rate and can be used as an indicator for the presence of microglia cells.</p>Formula:C8H7ClO3Purity:Min. 95%Molecular weight:186.59 g/molBoc-(2S,4S)-4-phenylpyrrolidine-2-carboxylic acid
CAS:<p>Boc-(2S,4S)-4-phenylpyrrolidine-2-carboxylic acid is a versatile building block that can be used in the synthesis of complex compounds. It has been shown to be a useful intermediate in the synthesis of pharmaceuticals and other compounds. Boc-(2S,4S)-4-phenylpyrrolidine-2-carboxylic acid is also a reagent for the preparation of heterocyclic compounds and other research chemicals. This chemical is soluble in methanol and water, but insoluble in ether or chloroform. The CAS number for this product is 96314-29-3.</p>Formula:C16H21NO4Purity:Min. 95%Color and Shape:White PowderMolecular weight:291.34 g/mol6-Bromohexanoic acid ethyl ester
CAS:<p>6-Bromohexanoic acid ethyl ester is a fluorescent compound that has been used to assess the presence of azobenzene in urine samples. This product is also used as a marker for capsicum annuum, which is an edible plant. 6-Bromohexanoic acid ethyl ester has been shown to be effective in the diagnosis of cancer, especially carcinoma cells. Coumarin derivatives have been found to possess fluorescence properties similar to 6-bromohexanoic acid ethyl ester and are also used as markers for cancer cells. The use of polyclonal antibodies and hydrochloric acid for this product can lead to fluorescence properties that are specific for cancer cells.</p>Formula:C8H15BrO2Purity:Min. 95%Color and Shape:Colourless To Pale Yellow LiquidMolecular weight:223.11 g/mol(S)-2-Azido isovaleric acid cyclohexylammonium
CAS:<p>Please enquire for more information about (S)-2-Azido isovaleric acid cyclohexylammonium including the price, delivery time and more detailed product information at the technical inquiry form on this page</p>Formula:C6H13N•C5H9N3O2Purity:Min. 95%Color and Shape:PowderMolecular weight:242.32 g/mol11-Ethoxycarbonyldodecanoic acid
CAS:<p>11-Ethoxycarbonyldodecanoic acid is a high quality, useful intermediate, and versatile building block. It has been shown to be an efficient reagent for the synthesis of complex compounds. 11-Ethoxycarbonyldodecanoic acid can be used as a speciality chemical or research chemical in the production of fine chemicals, as well as in the synthesis of useful scaffolds and building blocks. This compound is also a reaction component that can be used in the production of many different types of products.</p>Formula:C14H26O4Purity:Min. 95%Color and Shape:PowderMolecular weight:258.35 g/molLinolenic acid, 98.5%
CAS:<p>Linolenic acid is a polyunsaturated fatty acid that is an essential component of human nutrition. Linolenic acid has apoptosis-inducing properties and has been shown to induce the mitochondrial membrane potential in neuronal cells and induce neuronal death by decreasing the levels of pge2. Linolenic acid also participates in energy metabolism, as it can be converted into arachidonic acid, which is a precursor for prostaglandins. Linolenic acid has been shown to have physiological effects on humans, such as improving eye disorders and congestive heart failure. It does not seem to be linked with any toxicity or adverse effects.</p>Formula:C18H30O2Purity:Min. 95%Color and Shape:Colorless Clear LiquidMolecular weight:278.43 g/mol4-(3-Chloro-benzyloxy)benzoic acid
CAS:<p>4-(3-Chloro-benzyloxy)benzoic acid (4CBA) is a useful scaffold for the synthesis of complex compounds. It is a versatile building block that can be used as an intermediate in the synthesis of fine chemicals and research chemicals. 4CBA is also a reactive compound that can be used in reactions to form covalent bonds, such as amide formation. 4CBA has a CAS number of 84403-70-3 and can be used in reactions involving organic chemistry, such as esterification, etherification, nitration, sulfonation, amidation, and chlorination.</p>Formula:C14H11ClO3Purity:Min. 95%Color and Shape:White PowderMolecular weight:262.69 g/molDL-Mandelic acid benzyl ester
CAS:<p>DL-Mandelic acid benzyl ester is a chromatographic product with an alkyl group at the alpha position. It is reactive and has been used as an asymmetric synthesis to produce mandelonitrile, which can be converted to mandelic acid. DL-Mandelic acid benzyl ester has been shown to lower systolic pressure in rats by depleting catecholamines, and it may also have anticoagulant effects. This product is a crosslinker for polymers and can be used as a cationic surfactant, which may have potential for use in cosmetics or personal care products. It has been shown to inhibit the growth of cancer cells through its ability to activate growth factors.</p>Formula:C15H14O3Purity:Min. 95%Color and Shape:PowderMolecular weight:242.27 g/mol2-Aminophenylboronic acid
CAS:<p>2-Aminophenylboronic acid is an organic compound that can be used as a cross-coupling agent in the Suzuki coupling reaction. It has been used to synthesize amides and β-unsaturated ketones. It has also been used to prepare fluorescent molecules for use in clinical diagnostics. The phase transition temperature of 2-aminophenylboronic acid is approximately -6°C, which makes it useful for the synthesis of amides and β-unsaturated ketones at low temperatures. This compound is not reactive towards nucleophiles due to its acidic character, but it can undergo a nucleophilic attack when protonated. Its fluorescence assay can be used to detect the presence of low concentrations of hydrogen sulfide gas in natural gas pipelines.</p>Formula:C6H8BNO2Purity:Min. 95%Color and Shape:PowderMolecular weight:136.94 g/molBoc-L-indoline-2-carboxylic acid
CAS:<p>Boc-L-indoline-2-carboxylic acid is a high quality, versatile building block that can be used as a reagent or intermediate in organic synthesis. It is used as a research chemical and has potential applications in the development of new drugs. Boc-L-indoline-2-carboxylic acid is a complex compound that reacts with nucleophiles to form valuable products. It also has the ability to bind to metal ions such as copper, zinc, and nickel. This product can be used in reactions involving amines, alcohols, amides, phenols, carboxylic acids, sulfonic acids, and other compounds.</p>Formula:C14H17NO4Purity:Min. 95%Color and Shape:White PowderMolecular weight:263.29 g/mol2,4-Dichlorophenoxyacetic acid
CAS:Controlled Product<p>2,4-Dichlorophenoxyacetic acid is a chemical that is used to kill plants and has been shown to be toxic in humans. It has been used extensively in the past as an herbicide and insecticide. 2,4-Dichlorophenoxyacetic acid can be broken down by bacteria in wastewater treatment systems. This chemical has been shown to cause sublethal effects on cells, including changes in enzyme activities, protein genes, and gene expression levels. These changes are mediated by the production of reactive oxygen species (ROS). The mechanism of action for 2,4-dichlorophenoxyacetic acid involves the reaction with p-nitrophenyl phosphate (PNPP) to produce 2,4-dichlorobenzoic acid and formaldehyde.<br>2,4-Dichlorophenoxyacetic acid has also been shown to have an effect on human serum proteins.</p>Formula:C8H6Cl2O3Purity:Min. 98%Color and Shape:White PowderMolecular weight:221.04 g/molEthyl Hydrogen Maleate
CAS:Formula:C6H8O4Purity:>95.0%(GC)Color and Shape:Colorless to Almost colorless clear liquidMolecular weight:144.13Tetracosanoic acid
CAS:<p>Tetracosanoic acid is a biocompatible polymer that is synthesized by esterification of malonic acid with poly(ethylene glycol). This polymer has been shown to have biological properties and can be used as an analytical method in the detection of infectious diseases. Tetracosanoic acid has also been shown to inhibit HIV-1 infection in vitro. Tetracosanoic acid is a model system for studying the molecular interactions that occur during autoimmune diseases.</p>Formula:C24H48O2Purity:Min. 95%Color and Shape:White PowderMolecular weight:368.64 g/mol2,2'-Bipyridine-6-carboxylic acid
CAS:<p>2,2'-Bipyridine-6-carboxylic acid is a reagent that is used in organic synthesis as a reaction component and building block for the synthesis of heterocyclic compounds. 2,2'-Bipyridine-6-carboxylic acid is also used as a precursor to produce other compounds. 2,2'-Bipyridine-6-carboxylic acid has been shown to be useful in the synthesis of complex compounds with diverse structures, making it a versatile building block. It can also be used as an intermediate in the synthesis of various drugs and speciality chemicals.</p>Formula:C11H8N2O2Purity:Min. 95%Color and Shape:Off-White PowderMolecular weight:200.19 g/mol3-(2,4-Dimethylbenzoyl)propionic acid
CAS:<p>3-(2,4-Dimethylbenzoyl)propionic acid is a chemical building block that is used in the synthesis of many other compounds. It can be used in research as a reagent, and is also a useful intermediate in the synthesis of pharmaceuticals, agrochemicals, and other specialty chemicals. 3-(2,4-Dimethylbenzoyl)propionic acid has been shown to be effective as an antioxidant and has high reactivity with metals such as zinc. This compound has CAS No. 15880-03-2.</p>Formula:C12H14O3Purity:Min. 95%Color and Shape:PowderMolecular weight:206.24 g/molBromanilic acid
CAS:<p>Bromanilic acid is a ferroelectric material that contains nitrogen atoms. It is an active chemical that can be used to create holograms and light-emitting diodes. Bromanilic acid has been shown to have vibrational and structural properties, which are important for the development of new technology. Bromanilic acid has been studied in relation to its hydrogen bonding capabilities, proton transfer, and light emission. The constant of bromanilic acid was determined by structural analysis.</p>Formula:C6H2Br2O4Purity:Min. 95%Color and Shape:PowderMolecular weight:297.89 g/molo-Tolyl Acetate
CAS:<p>o-Tolyl Acetate is an organic compound that belongs to the class of aliphatic hydrocarbons. It has a reactive hydrogen atom (H) and a reactive hydrogen chloride (HCl). Hydrogen bonds are formed with other molecules, such as sodium citrate, pentobarbital sodium, detergent compositions, and fatty acids. The endpoints of this reaction are determined by the presence of a hydroxy methyl group (-CHOH) on one molecule and an alkoxy group (-OR) on the other. The reaction products are hydroxy methyl group and aliphatic hydrocarbon.</p>Formula:C9H10O2Purity:Min. 95%Molecular weight:150.17 g/molDL-Isocitric acid lactone
CAS:<p>DL-Isocitric acid lactone is a skin condition agent that belongs to the group of amides. It has hypoglycemic effects and, when applied topically, can improve skin conditions such as xerosis. DL-Isocitric acid lactone also inhibits the growth of bacteria by binding to dinucleotide phosphate in the bacterial cell wall and inhibiting protein synthesis. This compound also has an inhibitory effect on hydroxyl groups in polycarboxylic acids in plants. The structure of this compound was determined by x-ray crystallography.</p>Formula:C6H6O6Purity:Min. 95%Color and Shape:PowderMolecular weight:174.11 g/mol2-(p-tert-Butylbenzoyl)acrylic acid
CAS:<p>2-(p-tert-Butylbenzoyl)acrylic acid is an organic compound that belongs to the group of useful scaffolds, versatile building blocks, and fine chemicals. It is a useful intermediate in research chemical synthesis and a reaction component for speciality chemicals. 2-(p-tert-Butylbenzoyl)acrylic acid can be used as a reagent for the production of complex compounds. This product has been shown to have high quality and is useful as a building block in the synthesis of many other compounds.</p>Formula:C14H16O3Purity:Min. 95%Molecular weight:232.28 g/molCyanoacetic acid - 70% aqueous solution
CAS:<p>Cyanoacetic acid is an antimicrobial agent that can be used for the treatment of bowel disease, autoimmune diseases, and eye disorders. Cyanoacetic acid is a substrate molecule for sodium carbonate, which can be used to produce sodium carbonate by reacting with water. The reaction solution is then added to human serum or malonic acid to produce sodium carbonate, which can be used as a drug. Electrochemical impedance spectroscopy has been used as a tool to study the mechanism of cyanoacetic acid in treating inflammatory bowel disease.</p>Formula:C3H3NO2Purity:Min. 95%Color and Shape:Yellow PowderMolecular weight:85.06 g/mol5-Methylisoxazole-3-carboxylic acid
CAS:<p>5-Methylisoxazole-3-carboxylic acid (5MI3CA) is a covalent inhibitor that binds to ATP synthase and blocks the synthesis of ATP. It has been shown to be an anti-viral agent with a broad spectrum of activity against HIV, herpes simplex virus, and vaccinia virus. 5MI3CA also has pharmacokinetic properties that are similar to those of other drugs in the same class, such as pyridoxal phosphate. This drug has been shown to inhibit the production of water molecules from glucose by human liver cells and it is stable when complexed with proteins.<br>5MI3CA is synthesized on a solid phase using a three step process involving acid hydrolysis, coupling reaction, and protection steps. The reaction mixture consists of methanesulfonic acid (MSA), DMAP, NMM, EDC/NHS ester, and 5MI3CA. The final product is</p>Formula:C5H5NO3Purity:Min. 95%Molecular weight:127.1 g/mol4,4'-Biphenyldiboronic acid
CAS:<p>4,4'-Biphenyldiboronic acid is a boronate ester that can be used as a cross-linker in the synthesis of polymers. It is soluble in organic solvents, but insoluble in water. The chemical structure of 4,4'-biphenyldiboronic acid consists of two phenyl groups and one boronic acid group. This compound has been shown to have a spacing between 2.2 and 2.4 Å for germanium atoms and has been used for microscopy studies with morphology and diffraction experiments.</p>Formula:C12H12B2O4Purity:Min. 95%Color and Shape:White Off-White PowderMolecular weight:241.84 g/mol2,6-Dichlorobenzoic acid
CAS:<p>2,6-Dichlorobenzoic acid (2,6-DCBA) is a chemical substance that can be found in groundwater. 2,6-DCBA is metabolized by colon cells to produce metabolites, including 2,4-dichlorophenol and 4-chlorophenylacetic acid. The metabolic reaction products have been shown to inhibit the uptake of radioactive iodine by Caco-2 cells. 2,6-DCBA is also a monocarboxylic acid with two nitrogen atoms. It has been shown to have acute toxicities in rats and other animals. This substance can also be used as an analytical reagent for the determination of metals such as iron and copper.</p>Formula:C7H4Cl2O2Purity:Min. 95%Color and Shape:PowderMolecular weight:191.01 g/mol1-Methylindole-6-carboxylic acid
CAS:<p>1-Methylindole-6-carboxylic acid is a versatile building block that is used in the synthesis of more complex compounds. It can be used as a reagent, speciality chemical, and useful building block for pharmaceuticals and other research chemicals. 1-Methylindole-6-carboxylic acid has been shown to be an effective intermediate for the production of a number of different compounds. The compound can also act as a reaction component or scaffold for chemical reactions.</p>Formula:C10H9NO2Purity:Min. 95%Color and Shape:PowderMolecular weight:175.18 g/mol2-Ethoxy-4-methoxycinnamic acid
CAS:<p>2-Ethoxy-4-methoxycinnamic acid is a synthetic chemical with the CAS number 1372859-34-1. It is a versatile building block that can be used for the synthesis of many complex compounds. 2-Ethoxy-4-methoxycinnamic acid is one of a number of scaffolds that are useful for creating fine chemicals and research chemicals. This compound is also an intermediate in many reactions and can be used as a reagent to produce other substances.</p>Formula:C12H14O4Purity:Min. 95%Molecular weight:222.24 g/molFmoc-4-amino-tetrahydropyran-4-carboxylic acid
CAS:<p>Fmoc-4-amino-tetrahydropyran-4-carboxylic acid is a versatile building block that can be used for the synthesis of many complex compounds and research chemicals. It is a speciality chemical which has been shown to be a useful intermediate in reactions, as well as being a reagent. Fmoc-4-amino-tetrahydropyran-4-carboxylic acid has also been shown to be an effective scaffold for drug design and development.</p>Formula:C21H21NO5Purity:Min. 95%Color and Shape:White/Off-White SolidMolecular weight:367.4 g/molTuftsin acetate salt
CAS:<p>Please enquire for more information about Tuftsin acetate salt including the price, delivery time and more detailed product information at the technical inquiry form on this page</p>Formula:C21H40N8O6•C2H4O2Purity:Min. 95%Color and Shape:PowderMolecular weight:560.64 g/mol3,5-Diiodosalicylic acid
CAS:<p>3,5-Diiodosalicylic acid is a chemical compound that has been used in biological studies to study the kinetic energy of nuclear DNA and to examine the surface glycoprotein receptors. It binds tightly to copper chloride and lithium and can be used as an inhibitor for receptor activity. 3,5-Diiodosalicylic acid has also been shown to have anti-inflammatory effects in hl-60 cells by inhibiting the production of cytokines such as IL-1β, TNFα, IL-6, IL-10, and GM-CSF.</p>Formula:C7H4I2O3Purity:Min. 95%Color and Shape:PowderMolecular weight:389.91 g/molFmoc-(1R,2R)-2-aminocyclohexane carboxylic acid
CAS:<p>Fmoc-(1R,2R)-2-aminocyclohexane carboxylic acid is a versatile building block used as a reaction component in the synthesis of chemical compounds. It is classified as a speciality chemical and has been shown to be useful in the synthesis of complex compounds. The CAS number for this compound is 389057-34-5.</p>Formula:C22H23NO4Purity:Min. 99 Area-%Color and Shape:PowderMolecular weight:365.42 g/molIodomethylboronic acid, pinacol ester
CAS:<p>Iodomethylboronic acid is a synthetic compound that contains a boron atom. Iodomethylboronic acid can be used to produce other compounds, such as dibutyl iodide and epoxides, by introducing an oxygenated linker. The properties of iodomethylboronic acid have been extensively studied using modelling and assays. It has been shown to form stable complexes with aromatic hydrocarbons and amines. Iodomethylboronic acid can also be used in the synthesis of radionuclides, which are radioactive isotopes of elements that emit radiation spontaneously or when they undergo radioactive decay. Iodomethylboronic acid is often used in chemical reactions as a quaternary ammonium salt, which is a positively charged ion (cation) with four groups attached to it. These groups may be either organic or inorganic in nature.</p>Formula:C7H14BIO2Purity:Min. 95%Color and Shape:PowderMolecular weight:267.9 g/mol1-Cyclopentene-1-carboxylic acid
CAS:<p>1-Cyclopentene-1-carboxylic acid is a natural product with antimicrobial and anti-inflammatory properties. It has been shown to inhibit the production of proinflammatory cytokines, such as tumor necrosis factor (TNF), and prostaglandins, which are important in the pathogenesis of inflammatory diseases. 1-Cyclopentene-1-carboxylic acid also inhibits the activity of Cox-2 and has been shown to have cancer regulatory activities. This compound binds to β-amino acid receptors and can be used as an oxidation catalyst for trifluoroacetic acid.</p>Formula:C6H8O2Purity:Min. 95%Color and Shape:White/Off-White SolidMolecular weight:112.13 g/mol5-Chloro-2-nitrocinnamic acid
CAS:<p>5-Chloro-2-nitrocinnamic acid is a fine chemical with a CAS number of 20357-28-2. It is a versatile building block that can be used as a reaction component or intermediate in the synthesis of more complex compounds. The high purity and quality of 5-Chloro-2-nitrocinnamic acid makes it an ideal reagent for research purposes, and it can be used as a building block for the synthesis of useful scaffolds.</p>Formula:C9H6ClNO4Purity:Min. 95%Molecular weight:227.6 g/mol2-Chloro-5-fluoropyridine-3-carboxylic acid
CAS:<p>2-Chloro-5-fluoropyridine-3-carboxylic acid is an intermediate in the synthesis of fluorine compounds used in the industrial process. It can be synthesized by chlorinating 5-fluoropyridine with chlorine gas and a catalyst such as platinum, or by hydrogenating 2-chloro-5-pyridinecarboxylic acid. This chemical is used to manufacture other chemicals such as ethylene oxide, tetrafluoroethylene, and hexafluoroethane.</p>Formula:C6H3ClFNO2Purity:Min. 95%Molecular weight:175.54 g/molN-Methyl-DL-aspartic acid
CAS:<p>N-Methyl-DL-aspartic acid (NMDA) is a pharmacological agent that binds to the glutamate receptor and increases the intracellular calcium concentration in cells. NMDA has been shown to cause neuronal death in mouse hippocampal cells, as well as rat striatal cells. It can also act as a messenger molecule and enhance growth factor production. NMDA binds to the N-methyl-D-aspartate receptor, which is located on the surface of neurons in the brain. This binding causes an influx of sodium ions into the cell, resulting in an increase in the intracellular calcium concentration. This increase leads to changes in cellular function, including increased growth factor production and neuronal death.</p>Formula:C5H9NO4Purity:Min. 95%Color and Shape:PowderMolecular weight:147.13 g/mol4-Hydroxyphenylpyruvic acid
CAS:<p>4-Hydroxyphenylpyruvic acid is a natural compound that is found in the plant Pueraria lobata. It has inhibitory properties against tyrosine, photosynthetic activity and enzyme activities. This compound inhibits methyltransferase, which is an enzyme that catalyzes the transfer of a methyl group from S-adenosylmethionine to the substrate. 4-Hydroxyphenylpyruvic acid also inhibits dioxygenase enzymes, which are involved in the oxidation of organic compounds by molecular oxygen. 4-Hydroxyphenylpyruvic acid can be used as a potential chemical biology tool for studying natural products and their biosynthesis.</p>Formula:C9H8O4Purity:Min. 95%Color and Shape:White PowderMolecular weight:180.16 g/mol4-Iodo-3-nitrobenzoic acid
CAS:<p>4-Iodo-3-nitrobenzoic acid (4-INBA) is a nitro derivative of the aromatic acid. It is used as a chemotherapeutic agent and an intermediate in the synthesis of other drugs. 4-INBA has been shown to be cytotoxic to hamsters and inhibit cellular growth by binding to DNA polymerase and inhibiting DNA synthesis. 4-INBA also binds to RNA polymerase, inhibiting RNA synthesis and protein production, which causes cell death.</p>Formula:C7H4INO4Purity:90%Color and Shape:PowderMolecular weight:293.02 g/mol4-Chloro-3-methylbenzoic acid
CAS:<p>4-Chloro-3-methylbenzoic acid is a white crystalline solid that is soluble in water and alcohol. It has a melting point of 247°C and a boiling point of 305°C. This compound is used as an intermediate for the production of dyes and pharmaceuticals, such as anti-inflammatory drugs. 4-Chloro-3-methylbenzoic acid has been shown to be an inhibitor of DNA synthesis, RNA synthesis, and protein synthesis in bacteria. In addition, this compound inhibits the growth of Mycobacterium tuberculosis by inhibiting the metabolic pathways necessary for cell proliferation. 4-Chloro-3-methylbenzoic acid also has been shown to inhibit the growth of other bacteria such as Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, and Pseudomonas aeruginosa.</p>Formula:C8H7ClO2Purity:Min. 95%Color and Shape:PowderMolecular weight:170.59 g/molN-(4-Fluorophenyl)Anthranilic Acid
CAS:<p>N-(4-Fluorophenyl)Anthranilic Acid is a fine chemical that is used as a scaffold for research chemicals, reaction components, and speciality chemicals. It can be used as a building block for complex compounds and useful building blocks. This compound has been shown to have high quality and can be used as an intermediate in the synthesis of other chemicals. N-(4-Fluorophenyl)Anthranilic Acid is a versatile building block that can be used in the synthesis of many different types of compounds. It also has been shown to be useful in the production of pharmaceuticals, dyes, pesticides, and herbicides.</p>Formula:C13H10FNO2Purity:Min. 95%Color and Shape:Green PowderMolecular weight:231.22 g/molMethanesulphonyl acetic acid
CAS:<p>Methanesulphonyl acetic acid is a synthetic compound that is structurally related to the neurotransmitter serotonin. It was developed as an antibacterial agent in the late 1950s and early 1960s, but was never marketed because of its adverse effects on 5-hydroxytryptamine (5-HT) receptors, which are involved in depression and psychotic disorders. Methanesulphonyl acetic acid has been shown to inhibit receptor activity for 5-HT2A receptors, which may be due to its structural similarity with serotonin. This drug also has a molecular descriptor of constant logP value (-0.44), acidic pKa (-1.38), and molecular weight (204).</p>Formula:C3H6O4SPurity:Min. 95%Color and Shape:PowderMolecular weight:138.14 g/molTert-butyl 4-(1H-benzo[d]imidazol-2-yl)piperidine-1-carboxylate
CAS:<p>Tert-butyl 4-(1H-benzo[d]imidazol-2-yl)piperidine-1-carboxylate is a reagent that belongs to the group of specialty chemicals. It is an intermediate in organic synthesis and can be used as a building block in the preparation of complex compounds. Tert-butyl 4-(1H-benzo[d]imidazol-2-yl)piperidine-1-carboxylate is also useful in the preparation of speciality chemicals, such as pharmaceuticals, agrochemicals, and perfumes. This compound is a versatile building block that can be used as a reaction component in research and development.</p>Formula:C17H23N3O2Purity:Min. 95%Color and Shape:White to light yellow solid.Molecular weight:301.38 g/mol4-n-Octyloxybenzoic Acid
CAS:<p>4-n-Octyloxybenzoic Acid is a chemical compound that is soluble in organic solvents. It has a phase transition temperature of 156 °C and a melting point of 141 °C. 4-n-Octyloxybenzoic Acid is used as an intermediate in the synthesis of other compounds. It can be used as a fluorescence probe to detect intermolecular hydrogen bonding or as an intermediate in the Suzuki coupling reaction, which is used to polymerize styrene. 4-n-Octyloxybenzoic Acid can also be used as a liquid crystal composition for optical microscopy. It has been found to have ternary mixtures with butyric acid and phenol and dipole properties that are sensitive to changes in pH and ion concentration.<br>4-n-Octyloxybenzoic Acid has been shown to be able to activate the suzuki coupling reaction by donating its lone pair electrons to the carbonyl carbon atom</p>Formula:C15H22O3Purity:Min. 95%Color and Shape:PowderMolecular weight:250.33 g/mol5-Acetoxymethyl-2-furancarboxylic acid
CAS:<p>5-Acetoxymethyl-2-furancarboxylic acid is a natural product of the fungi. It has potent anti-fungal activity against a number of endophytic fungi, including those from marine sponges. 5-Acetoxymethyl-2-furancarboxylic acid has been shown to inhibit the growth of bacteria that are resistant to penicillin, ampicillin, and erythromycin. The bioactive compound also inhibits the growth of leukemia cells and is used as an anti-infective agent in the treatment of infections caused by staphylococcus. The active form binds to bacterial 16S ribosomal RNA and inhibits protein synthesis, leading to cell death by inhibiting the production of proteins vital for cell division.</p>Formula:C8H8O5Purity:Min. 95%Color and Shape:White To Light (Or Pale) Yellow SolidMolecular weight:184.15 g/molMethyl 3-amino-5-methyl thiophene-2-carboxylate
CAS:<p>Methyl 3-amino-5-methyl thiophene-2-carboxylate is a fine chemical that belongs to the group of useful scaffolds, versatile building blocks, useful intermediates for research chemicals and speciality chemicals. It can be used as reaction components in the synthesis of complex compounds. Methyl 3-amino-5-methyl thiophene-2-carboxylate is a high quality reagent with a wide range of applications in organic chemistry.</p>Formula:C7H9NO2SPurity:Min. 95%Color and Shape:PowderMolecular weight:171.22 g/mol2-Fluoro-4-methylbenzoic acid methyl ester
CAS:<p>2-Fluoro-4-methylbenzoic acid methyl ester is a versatile building block useful for the synthesis of a variety of compounds. It is an important intermediate and research chemical that can be used as a reaction component or speciality chemical. 2-Fluoro-4-methylbenzoic acid methyl ester is also a useful building block with high quality and reagent.</p>Formula:C9H9FO2Purity:Min. 95%Color and Shape:Clear LiquidMolecular weight:168.16 g/mol6-Fluoroindole-3-acetic acid
CAS:<p>6-Fluoroindole-3-acetic acid is a molecule that has been synthesized by the reaction of 6-fluoroindole with acetic anhydride. When mixed with acetonitrile, the fluorescence of 6-fluoroindole-3-acetic acid can be seen in the solution. The fluorescence intensity is proportional to the concentration of this molecule. 6-Fluoroindole-3-acetic acid is used as a template molecule for fluorescence labeling experiments. It interacts with hormones and can be used to identify their conformations and interactions. This compound has been shown to have anticancer properties in mice, and it may also be effective against cancer cells in humans. It has also been shown to inhibit the growth of pisum sativum (pea).</p>Formula:C10H8FNO2Purity:Min. 95%Color and Shape:PowderMolecular weight:193.17 g/mol3-(1H-Imidazol-2-yl)benzoic acid
CAS:<p>Please enquire for more information about 3-(1H-Imidazol-2-yl)benzoic acid including the price, delivery time and more detailed product information at the technical inquiry form on this page</p>Formula:C10H8N2O2Purity:Min. 95%Color and Shape:PowderMolecular weight:188.18 g/mol3,5-Dinitrosalicylic acid sodium
CAS:<p>3,5-Dinitrosalicylic acid sodium is an inorganic compound that is used as a biochemical reagent. It can be used to measure the phosphatase activity of muscle and liver samples, as well as to determine the level of autophagy in cells. 3,5-Dinitrosalicylic acid sodium has been shown to inhibit the activity of a number of enzymes, including acid phosphatase and thiourea. When combined with chloroplast or mitochondria, it can be used to determine the rate of electron transport chain. 3,5-Dinitrosalicylic acid sodium binds to sulfhydryl groups on proteins and prevents them from being used for other purposes. This process optimization leads to engulfment followed by lysosomal degradation.</p>Formula:C7H3N2NaO7Purity:Min. 95%Color and Shape:PowderMolecular weight:250.1 g/mol6-(Dimethylamino)nicotinic acid
CAS:<p>6-(Dimethylamino)nicotinic acid is a fine chemical and research chemical that is useful as a building block for complex compounds. It is also used as a reagent in the synthesis of other chemicals, or as an intermediate or scaffold molecule in organic chemistry. This chemical has been shown to be useful in the synthesis of many drugs, including penicillin and erythromycin. 6-(Dimethylamino)nicotinic acid has CAS number 82846-28-4.</p>Formula:C8H10N2O2Purity:Min. 95%Color and Shape:White PowderMolecular weight:166.18 g/mol4-Iodo-3-methylbenzoic acid
CAS:<p>4-Iodo-3-methylbenzoic acid is a bifunctional phosphine that can be activated by phosphine gas. This compound has been shown to react with diethyl ethers and form a lanthanide phosphine complex. 4-Iodo-3-methylbenzoic acid also reacts with azides to form triazinylphosphines, which are used in fluorescence techniques. 4-Iodo-3-methylbenzoic acid has luminescent properties, which may be due to its ability to produce singlet oxygen when irradiated with visible light.</p>Formula:C8H7IO2Purity:Min. 80%Color and Shape:PowderMolecular weight:262.04 g/molBoc-(3S)-1,2,3,4-Tetrahydroisoquinoline-3-carboxylic acid
CAS:<p>Boc-(3S)-1,2,3,4-Tetrahydroisoquinoline-3-carboxylic acid is an amino acid that has the δ-opioid receptor antagonist activity. It can be synthesized by a stepwise synthesis with an asymmetric center. The δ-opioid receptor antagonist activity of Boc-(3S)-1,2,3,4-Tetrahydroisoquinoline-3-carboxylic acid was found to be comparable to naloxone in terms of affinity constants and functional groups.</p>Formula:C15H19NO4Purity:Min. 95%Color and Shape:SolidMolecular weight:277.32 g/mol6-Thiouric acid sodium salt dihydrate
CAS:<p>6-Thiouric acid sodium salt dihydrate is a reaction component and fine chemical that is used as a reagent in the synthesis of various speciality chemicals. It has been used as a building block for the synthesis of complex compounds, and is also an intermediate for the production of high quality research chemicals. 6-Thiouric acid sodium salt dihydrate is soluble in water, methanol, ethanol, acetone and benzene. The CAS number for this product is 1329805-85-7.</p>Formula:C5H7N4NaO4SPurity:Min. 95%Color and Shape:PowderMolecular weight:242.19 g/mol(5-(Prop-1-yn-1-yl)pyridin-3-yl)boronic acid
CAS:<p>(5-(Prop-1-yn-1-yl)pyridin-3-yl)boronic acid is a versatile building block that has been used in the synthesis of complex compounds, reagents, and speciality chemicals. It can also be used in reactions as a reaction component or scaffold. This chemical is soluble in most organic solvents and can be used as a high quality intermediate for synthesis of pharmaceuticals or research chemicals. It has been shown to have a CAS number of 917471-30-8.</p>Formula:C8H8BNO2Purity:Min. 95%Color and Shape:PowderMolecular weight:160.97 g/mol2-[4-(Trifluoromethyl)Phenoxy]Benzoic Acid
CAS:<p>2-[4-(Trifluoromethyl)phenoxy]benzoic acid is a research chemical that is used as a building block in organic synthesis. This compound can be used to synthesize other compounds and to create new reactions. 2-[4-(Trifluoromethyl)phenoxy]benzoic acid is a versatile building block for complex molecules and can be used as an intermediate or scaffold for the formation of other compounds. The high quality of this compound makes it useful for research purposes and its CAS number makes it easy to identify.</p>Formula:C14H9F3O3Purity:Min. 95%Color and Shape:PowderMolecular weight:282.21 g/mol9-Decenoic acid
CAS:<p>9-Decenoic acid is a fatty acid that belongs to the group of monocarboxylic acids. It is a constituent of many chemical substances, such as fatty acids and fatty alcohols. 9-Decenoic acid has antimicrobial properties and can be used as an additive in food production to inhibit the growth of bacteria. 9-Decenoic acid also has viscosity increasing properties, which may be due to its hydroxyl group or propranolol hydrochloride. The profile of this compound includes nitrogen atoms and metathesis reactions, which are polycarboxylic acids.</p>Formula:C10H18O2Purity:Min. 95%Color and Shape:LiquidMolecular weight:170.25 g/mol4-Bromo-1-hydroxyanthraquinone-2-carboxylic acid
CAS:<p>4-Bromo-1-hydroxyanthraquinone-2-carboxylic acid is a monocarboxylic acid that is used in analytical chemistry to optimize the process efficiency. It can be used as an extraction solvent, and its kinetics can be modeled using quadratic equations to optimize the recovery of analytes. 4-Bromo-1-hydroxyanthraquinone-2-carboxylic acid has also been shown to be useful for surface methodology, where it improves the dispersive power of carboxy groups on a surface.</p>Formula:C15H7BrO5Purity:Min. 95%Molecular weight:347.12 g/molClodronic acid disodium salt
CAS:<p>Clodronic acid disodium salt is a drug that can be used as a treatment for bowel disease. It binds to the chemoattractant protein and inhibits the activation of toll-like receptor 4, which is involved in inflammatory reactions. Clodronic acid also has an effect on polymorphonuclear leucocytes, inhibiting the production of cytokines and other inflammatory mediators. Clodronic acid has been shown to reduce neuronal death in experimental models and inhibit mitochondrial membrane potential in leukemic mice. The drug acts by binding to basic proteins in bone cells, preventing the release of calcium from bone stores into the blood stream. The monosodium salt form is more soluble than clodronate, which is a disodium salt.</p>Formula:CH2Cl2Na2O6P2Purity:Min. 95%Color and Shape:White PowderMolecular weight:288.86 g/molBoc-L-glutamic acid a-t-butyl ester
CAS:<p>Boc-L-glutamic acid a-t-butyl ester is a specific antibody that has been shown to be effective in the diagnosis of cancer. This antibody binds to an antigen expressed by liver cells and can be used as a marker for cancer. It has also been shown to have an adjuvant effect on vaccines, which may lead to better protection against disease. Boc-L-glutamic acid a-t-butyl ester can also be used in the treatment of pancreatitis and other acute ischemic conditions because it promotes the release of hydrogen chloride, which helps to relieve pain.</p>Formula:C14H25NO6Purity:Min. 95%Color and Shape:PowderMolecular weight:303.35 g/mol1,2,3,4-Tetrahydro-2-naphthalenecarboxylic acid
CAS:<p>1,2,3,4-Tetrahydro-2-naphthalenecarboxylic acid (1,2,3,4-THN) is an organic acid that can be metabolized by debromination or trifluoroacetic acid. It is a precursor for the synthesis of 5-caffeoylquinic acid and other biologically active compounds. 1,2,3,4-THN has been shown to have inhibitory effects on cancer cells. It also has chemical compositions including hydroxy groups and borohydride reduction sites that are important in its efficient method of synthesis.</p>Formula:C11H12O2Purity:Min. 95%Color and Shape:White PowderMolecular weight:176.21 g/mol4-Nitrophenylacetic acid
CAS:<p>4-Nitrophenylacetic acid is a chemical compound that belongs to the class of organic compounds known as nitrophenols. It has been shown to inhibit malonic enzyme, also known as 3-hydroxyacyl-CoA dehydrogenase. This inhibition is thought to be due to the nitro group on the molecule, which reacts with the active site cysteine residue in the enzyme. 4-Nitrophenylacetic acid can be used in the synthesis of monoclonal antibodies. The structure of 4-nitrophenylacetic acid has one hydroxyl group and two nitro groups that are separated by a methylene bridge (a carbon atom with two hydrogen atoms). The reaction solution for this substance contains diazonium salt and hydrochloric acid.</p>Formula:C8H7NO4Purity:Min. 98 Area-%Color and Shape:White PowderMolecular weight:181.15 g/mol2-Fluorobenzoic acid methyl ester
CAS:<p>2-Fluorobenzoic acid methyl ester is a chemical compound that belongs to the group of borohydride reduction. It is a colorless liquid that can be used as a solvent for chemical reactions. 2-Fluorobenzoic acid methyl ester is used in synthetic methods, such as the reduction of benzoate to benzyl alcohol. The borohydride reduction produces a mixture of regioisomers, which can be separated by fractional distillation. 2-Fluorobenzoic acid methyl ester is also used in the synthesis of hydrogen peroxide, which is produced by the reaction of sodium borohydride with hydrogen peroxide. Hydrogen peroxide can then react with 2-fluoro benzoic acid methyl ester to produce 2-fluoro benzaldehyde and water.</p>Formula:C8H7FO2Purity:Min. 95%Color and Shape:Clear LiquidMolecular weight:154.14 g/mol(1S)-(+)-10-Camphorsulfonic acid
CAS:<p>(1S)-(+)-10-Camphorsulfonic acid is an organolithium compound that is used as a reagent in organic synthesis. It has been shown to have antimicrobial activity against Gram-positive and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The bathochromic shift observed in the infrared spectrum of camphorsulfonic acid at 860 nm is due to the hydrogen bonding between sulfonic acid groups. Camphorsulfonic acid has also been shown to inhibit dipeptidyl peptidase-IV, which results in increased levels of butyric acid, a short chain fatty acid. This inhibition may be responsible for its use as an adjuvant for vaccines.</p>Formula:C10H16O4SPurity:Min. 95%Color and Shape:PowderMolecular weight:232.3 g/mol2-Bromo-5-methoxybenzoic acid methyl ester
CAS:<p>2-Bromo-5-methoxybenzoic acid methyl ester is an antibiotic with a broad spectrum of activity against bacteria, including Staphylococcus aureus and Pseudomonas aeruginosa. 2-Bromo-5-methoxybenzoic acid methyl ester is an inhibitor of the enzyme benzohydrazide, which is involved in the production of prostaglandins. This drug also has antioxidant activity and can inhibit the growth of Escherichia coli and Cereus. 2-Bromo-5-methoxybenzoic acid methyl ester has analgesic properties and was shown to have analgesic activities in animal tests.</p>Formula:C9H9BrO3Purity:Min. 95%Color and Shape:Clear LiquidMolecular weight:245.07 g/molIsobarbituric acid
CAS:<p>Isobarbituric acid is a glycosylase that cleaves the bond between the amino group and the hydroxyl group of uridine in DNA. It has been shown to react with nucleophilic groups at neutral pH, such as an amine or hydroxyl group. Isobarbituric acid can be used to measure oxidative damage to DNA. This compound is reactive and sensitive to UV light, which makes it useful for detecting damaged DNA. Isobarbituric acid has been shown to induce neuronal death in rodents by interfering with dendritic spine formation.</p>Formula:C4H4N2O3Purity:Min. 95%Color and Shape:White PowderMolecular weight:128.09 g/mol(2S,4R)-Boc-4-hydroxypiperidine-2-carboxylic acid
CAS:<p>(2S,4R)-Boc-4-hydroxypiperidine-2-carboxylic acid is a fine chemical that is used as an intermediate in organic synthesis. It has been shown to be a versatile building block for the construction of complex compounds. (2S,4R)-Boc-4-hydroxypiperidine-2-carboxylic acid is also a speciality chemical with many applications in the research field.</p>Formula:C11H19NO5Purity:Min. 95%Color and Shape:PowderMolecular weight:245.27 g/molDeoxy corticosterone acetate
CAS:Controlled Product<p>Deoxy corticosterone acetate is a synthetic analogue of the natural compound corticosterone. It has been shown to cause liver lesions, cardiac effects, and hypertension in laboratory animals. Deoxy corticosterone acetate binds to dinucleotide phosphate and prevents its conversion into cytosolic calcium. This interaction inhibits the phosphorylation of myocardial proteins and reduces the production of ATP in heart muscle cells. The binding of deoxycorticosterone acetate to DNA is also an important factor in its toxicity.</p>Formula:C23H32O4Purity:Min. 97 Area-%Color and Shape:White Off-White PowderMolecular weight:372.5 g/molMethyl 4-hydroxypyrrolidine-2-carboxylate
CAS:<p>Methyl 4-hydroxypyrrolidine-2-carboxylate is a fine chemical that is used as a building block in the synthesis of various pharmaceuticals and other organic compounds. It is also a reagent for research purposes, being used as an intermediate for the synthesis of other compounds.<br>Methyl 4-hydroxypyrrolidine-2-carboxylate has been shown to be useful in the synthesis of complex molecules, such as natural products, antibiotics and anti-cancer agents. This compound is also versatile in its reactivity and can be used both as an acid or base catalyst. Methyl 4-hydroxypyrrolidine-2-carboxylate can be used as scaffold to produce new compounds with desired properties.</p>Formula:C6H11NO3Purity:Min. 95%Color and Shape:White to off-white solid.Molecular weight:145.16 g/molTetrahydrofuran-2,3,4,5-tetracarboxylic acid
CAS:<p>Tetrahydrofuran-2,3,4,5-tetracarboxylic acid (THF-TTCA) is a polycarboxylic acid that can be extracted from coal tar. It has a number of uses as an extractant in the production of polycarbonates and other plastics. Tetrahydrofuran-2,3,4,5-tetracarboxylic acid has been shown to crystallize from solution at high temperatures and pressures. The crystal structure of THF-TTCA consists of a ring of six carboxylate groups with three molecules of water coordinating to form hydrogen bonds. Tetrahydrofuran-2,3,4,5-tetracarboxylic acid has the structural analog of the metal ion tetraammineborane (NHBH). This compound is acidic and binds strongly to metal ions such as copper(II) or cobalt(III</p>Formula:C8H8O9Purity:Min. 95%Molecular weight:248.14 g/mol3-Methylcinnamic acid
CAS:<p>3-Methylcinnamic acid is an organic acid that is a phenylpropanoid metabolite. It is synthesized from malonic acid by hydroxylation and sulfonation, and then converted to cinnamic acid derivatives. 3-Methylcinnamic acid has been shown to inhibit the activity of heterocyclic amine-producing enzymes and has a strong inhibitory effect on the formation of triticum aestivum. 3-Methylcinnamic acid has been found to have diverse chemical properties that are useful for industrial purposes.</p>Formula:C10H10O2Purity:Min. 95%Color and Shape:PowderMolecular weight:162.19 g/mol4-[(4-Methylbenzyl)oxy]benzoic acid
CAS:<p>4-[(4-Methylbenzyl)oxy]benzoic acid is a high quality chemical that can be used as a building block in the synthesis of complex compounds or as an intermediate in the preparation of speciality chemicals. This reagent is useful for research purposes and can be used to prepare other compounds with similar structures. 4-[(4-Methylbenzyl)oxy]benzoic acid can also be used as a reactant in chemical reactions to produce new products.</p>Formula:C15H14O3Purity:Min. 95%Color and Shape:White PowderMolecular weight:242.27 g/mol5-Nitro-3-pyrazolecarboxylic acid
CAS:<p>5-Nitro-3-pyrazolecarboxylic acid is a lead compound that has been shown to induce transcription of the gene encoding for the transcription factor, PPARγ. This molecule has also been shown to have anti-cancer and anti-diabetic properties in cellular and animal models. 5-Nitro-3-pyrazolecarboxylic acid has been observed to interact with other molecules by bonding to them or inhibiting their function. These interactions may be responsible for some of its diverse effects on metabolic disease, cancer, and transcription factors.</p>Formula:C4H3N3O4Purity:Min. 95%Color and Shape:PowderMolecular weight:157.08 g/molN-Methyl-D-aspartic acid
CAS:<p>NMDA agonist</p>Formula:C5H9NO4Purity:Min. 95%Color and Shape:White PowderMolecular weight:147.13 g/mol4-tert-Butylbenzoic acid hydrazide
CAS:<p>4-tert-Butylbenzoic acid hydrazide is a compound that can be used in the treatment of cancer. It has been shown to inhibit anhydrase in the presence of organic solvents, such as methanol. 4-tert-Butylbenzoic acid hydrazide has also been shown to have anticancer activity and can be used as a chemotherapeutic agent. This drug inhibits DNA synthesis by forming covalent bonds with the nucleotide bases through displacement of the enzyme histidine kinase and inhibition of the enzyme carbonic anhydrase II. 4-tert-Butylbenzoic acid hydrazide is also capable of inhibiting xanthine oxidase and aconitase in vitro, which are enzymes involved in cellular respiration. 4-tert-Butylbenzoic acid hydrazide has been found to be more potent than phenacetin and acetaminophen, drugs that are commonly used</p>Formula:C11H16N2OPurity:Min. 95%Color and Shape:PowderMolecular weight:192.26 g/mol6-Chloro-2-cyclopropylnicotinic acid
CAS:<p>6-Chloro-2-cyclopropylnicotinic acid is a clear, colorless liquid that is soluble in organic solvents. It has a molecular weight of 174.9 and an empirical formula of C8H7ClN2O2. This compound is used as a reagent, intermediate, or building block in organic synthesis and can be used in the production of pharmaceuticals. It is also useful as a building block for drug discovery and can be used to produce various other compounds with biological activity, such as 4-chloro-1-(4-nitrophenyl)piperidine.<br>6-Chloro-2-cyclopropylnicotinic acid is described by CAS number 862695-75-8 and has the chemical name 6-(chloromethyl) 2-(cyclopropyl) nicotinic acid.</p>Formula:C9H8ClNO2Purity:Min. 95%Color and Shape:PowderMolecular weight:197.62 g/mol3,4-(Methylenedioxy)phenylacetic acid
CAS:Controlled Product<p>3,4-(Methylenedioxy)phenylacetic acid is a synthetic compound that has been shown to inhibit tyrosine phosphatases. This inhibition leads to an increase in the production of protein kinase C and other enzymes that are involved in signal transduction processes, which result in the promotion of cell proliferation. 3,4-(Methylenedioxy)phenylacetic acid also possesses photochemical properties and can absorb ultraviolet light at wavelengths of up to 300 nm. It has been shown to have inhibitory effects on tumour cells and is used as a lead compound for the development of new drugs. 3,4-(Methylenedioxy)phenylacetic acid interacts with receptor ligands and is a functional theory drug that binds to receptors on cell surfaces. The coumarin ring present in this molecule may be important for binding to receptors, although it does not appear to be necessary for its anti-tumour activity.</p>Formula:C9H8O4Purity:Min. 95%Molecular weight:180.16 g/mol(R)-2-Amino-6-azidohexanoic acid HCl
CAS:<p>(R)-2-Amino-6-azidohexanoic acid HCl is a chemical intermediate that is used in the synthesis of a number of biologically active compounds. It is also a versatile building block for the construction of complex molecules. This chemical has been shown to be useful in the synthesis of pharmaceuticals, agrochemicals, and other fine chemicals. CAS No. 2098497-01-7</p>Formula:C6H12N4O2·HClPurity:Min. 95%Color and Shape:White PowderMolecular weight:208.65 g/mol3-Cyanomethylbenzoic acid methyl ester
CAS:<p>3-Cyanomethylbenzoic acid methyl ester is a synthetic chemical compound that is used as an intermediate in the production of other chemicals. It is a chlorination agent that reacts with toluene and methanol in the presence of chlorine to produce 3-chloromethylbenzoic acid methyl ester. This reaction also produces a byproduct called sulphone, which can be converted into acylation reagents for use in organic synthesis. The chloride ion can be used for cyanation reactions, which are useful for producing dyes or pharmaceuticals.</p>Formula:C10H9NO2Purity:Min. 95%Color and Shape:SolidMolecular weight:175.18 g/mol2,4,6-Trichlorobenzoic acid
CAS:<p>2,4,6-Trichlorobenzoic acid is a trifluoroacetic acid that has been used as a solvent in vitro assays and as a carbon source for kinetic studies. It has also been shown to be an effective inhibitor of bacterial growth when tested with dextrans. 2,4,6-Trichlorobenzoic acid is toxic to cells in culture and can inhibit fatty acid synthesis by inhibiting the activity of fatty acid synthase.<br>2,4,6-Trichlorobenzoic acid has also been found to have anti-inflammatory properties and may be useful for the treatment of asthma.</p>Formula:C7H3Cl3O2Purity:Min. 95%Color and Shape:PowderMolecular weight:225.46 g/mol2,2-Difluoro-2-(4-fluorophenyl)acetic acid
CAS:<p>2,2-Difluoro-2-(4-fluorophenyl)acetic acid is a versatile building block that can be used as a reagent in the synthesis of complex compounds. This chemical is also an intermediate in the synthesis of pharmaceuticals and agrochemicals. It can be used as a speciality chemical for research purposes. The compound has been shown to have high quality and is useful as a scaffold for the synthesis of other compounds.</p>Formula:C8H5F3O2Purity:Min. 95%Color and Shape:White To Off-White SolidMolecular weight:190.12 g/mol4-(tert-Butyldimethylsilyloxy)phenylboronic acid
CAS:<p>4-(tert-Butyldimethylsilyloxy)phenylboronic acid (BSPOH) is a molecule that has been shown to have growth factor activity. Studies have shown that BSPOH can stimulate the uptake of iron in cells, which may be due to its ability to increase hepcidin production. This compound also has anti-cancer properties and can induce apoptosis in cancer cell lines.</p>Formula:C12H21BO3SiPurity:Min. 95%Color and Shape:White PowderMolecular weight:252.19 g/mol5-(3-Nitrophenyl)-1H-pyrazole-3-carboxylic acid
CAS:<p>5-(3-Nitrophenyl)-1H-pyrazole-3-carboxylic acid is a molecule that inhibits the proliferation of cancer cells in vitro. This compound has been shown to inhibit the growth of human breast cancer cells in culture, with IC50 values of 7.8 µM for MCF-7 and 5.6 µM for A549 cells. It also inhibits cell growth in MDA-MB231 cells, which are human breast carcinoma cells, with IC50 values of 4.5 µM for MCF-7 and 2.4 µM for A549 cells. The mechanism by which this drug inhibits cancer cell proliferation is not clear but may be due to its ability to interfere with DNA synthesis or protein synthesis.</p>Formula:C10H7N3O4Purity:Min. 95%Color and Shape:PowderMolecular weight:233.18 g/molβ-Casomorphin (1-4) amide (bovine) acetate salt
CAS:<p>Beta-casomorphin (1-4) amide (bovine) acetate salt is a peptide hormone. It is an opioid and has been shown to bind to the kappa-opioid and δ receptors. Beta-casomorphin (1-4) amide (bovine) acetate salt has also been shown to have biological properties. Beta-casomorphin (1-4) amide (bovine) acetate salt is structurally similar to morphiceptin and analogs of this drug have been synthesized that are more potent than beta-casomorphin (1-4) amide (bovine) acetate salt. These analogs have not yet been tested in vitro or in vivo, but it is believed that they will be more potent than beta-casomorphin (1-4) amide (bovine) acetate salt because of their structural similarity.</p>Formula:C28H35N5O5Purity:Min. 95%Color and Shape:White PowderMolecular weight:521.61 g/molEthyl 4,4,4-Trichloroacetoacetate
CAS:<p>Ethyl 4,4,4-trichloroacetoacetate is a chloroalkyl compound that belongs to the class of activated esters. It is synthesized by the reaction of ethyl alcohol with chloride and potassium hydroxide in the presence of a base. The synthetic method for this compound was first developed in the mid-1930s by German chemists. This compound also has been used in the synthesis of coumarin derivatives as well as a catalyst in organic reactions. Ethyl 4,4,4-trichloroacetoacetate has been shown to be effective in treating neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.</p>Formula:C6H7Cl3O3Purity:Min. 95%Color and Shape:Colourless To Pale Yellow LiquidMolecular weight:233.48 g/mol(S)-N-Boc pipecolic acid
CAS:<p>Pipecolic acid is a natural product that is the major intermediate in the synthesis of the amino acid L-leucine. It is also an endopeptidase inhibitor that has been shown to have inhibitory potency against hepatitis C virus. Pipecolic acid has been synthesized by solid-phase peptide synthesis and its chiral center has been confirmed by NMR spectroscopy. The compound also exhibits affinity for alcohols and nervous system tissues, as well as agonist potency for NMDA receptors.</p>Formula:C11H19NO4Purity:Min. 95%Color and Shape:White SolidMolecular weight:229.27 g/mol2-Amino-4-thiazolecarboxylic acid
CAS:<p>2-Amino-4-thiazolecarboxylic acid is a potent antiviral agent that inhibits influenza virus replication. It has been shown to be effective in vivo against the growth of tumor cells and to inhibit the activity of viral proteases. It also inhibits the activity of human plasma cholinesterase, which may be due to its structural similarity to acetylcholine. 2-Amino-4-thiazolecarboxylic acid is soluble in water and hydrochloric acid, but insoluble in ether or chloroform. This compound has been used as an analytical standard for measuring plasma levels of chloride ions by ion chromatography.</p>Formula:C4H4N2O2SPurity:Min. 95%Color and Shape:PowderMolecular weight:144.15 g/mol4-Iodo-3-methylbenzoic acid methyl ester
CAS:<p>4-Iodo-3-methylbenzoic acid methyl ester is a chemical that is structurally analogous to 4-iodo-2,5-dimethoxybenzoic acid methyl ester. It is synthesized by the reaction of 3-methylbenzoic acid with ethyl chloroformate and iodomethane. 4-Iodo-3-methylbenzoic acid methyl ester has been shown to inhibit o6 alkylguanine DNA alkyltransferase (AGT) and o6 alkylguanine dna glycosylase (AGG). AGT and AGG are enzymes that repair DNA damage caused by reactive oxygen species. This inhibition leads to the accumulation of DNA damage in cells and induces apoptosis.</p>Formula:C9H9IO2Purity:90%Color and Shape:PowderMolecular weight:276.07 g/molCAPSO sodium salt
CAS:<p>CAPSO-Na salt, also known as3-Cyclohexylamino-2-hydroxypropanesulfonic acid sodium salt, is a zwitterionic buffer chemical that has an optimal pH range of 8.9-10.3 and a pKa of 9.6. This buffering agent shows low metal ion binding and high solubility and is commonly used in protein transfer applications and during cell lysis for membrane protein extraction.</p>Formula:C9H18NNaO4SPurity:Min. 95%Color and Shape:White To Off-White SolidMolecular weight:259.3 g/molSuccinic acid
CAS:<p>Succinic acid is a calcium salt of succinic acid that can be used as a chemical reagent. It has been shown to have protective effects against ischemic preconditioning, which may be due to its ability to inhibit the production of nitric oxide. Succinic acid also inhibits alcohol dehydrogenase and has been shown to have an anti-inflammatory effect in human mdr1 knockout mice. This compound is used as an analytical reagent for the determination of nitrate reductase activity in biological samples. Succinic acid is also used as a reagent for coordination geometry in organic chemistry.</p>Formula:C4H6O4Color and Shape:PowderMolecular weight:118.09 g/mol(S)-2-Bromopropionic acid
CAS:<p>(S)-2-Bromopropionic acid is a synthetic compound that has been shown to bind to an antigen. The structure activity relationship of this compound has been studied in order to find a suitable surrogate for the synthesis of (S)-2-Bromopropionic acid. This compound was synthesized using solid-phase chemistry and the resulting product was purified by HPLC. The synthetic route for (S)-2-Bromopropionic acid included d-alanine, which was used as the biomolecular building block. The alkylation reaction involved the use of chloroacetic acid and methyl iodide, which were reacted with d-alanine in aqueous solution at room temperature. After hydrolysis, ester linkages were introduced with methanol and acetic anhydride. The final product was purified by recrystallization from methanol and acetone.</p>Formula:C3H5BrO2Purity:Min. 95%Color and Shape:Slightly Yellow Clear LiquidMolecular weight:152.97 g/mol3-Bromo-4-methylbenzoic acid
CAS:<p>3-Bromo-4-methylbenzoic acid is a labile chemical compound that is used in the synthesis of retinoic acid, an analog of vitamin A. 3-Bromo-4-methylbenzoic acid can be synthesized by a two step process involving the boronic ester and biphenyl. The biphenyl is first treated with phosphorus pentachloride to produce a phenoxyacetate which reacts with 3-bromo-4-methylbenzoyl chloride in the presence of base to produce 3-bromo-4-methylbenzoic acid. This conversion can also be done via a solid phase synthesis where the biphenyl is anchored on silica gel and reacted with 3-bromo-4 methylbenzoyl chloride. The boronic esters are then cleaved from the solid support by treatment with sodium hydroxide under reflux conditions.<br>3 - Bromo -</p>Formula:C8H7BrO2Purity:Min. 95%Color and Shape:PowderMolecular weight:215.04 g/molEthyl 3-aminobenzofuran-2-carboxylate
CAS:<p>Ethyl 3-aminobenzofuran-2-carboxylate is a decarboxylated pyridine derivative that has been shown to react with an aldoxime to form an unsymmetrical aldehyde. This reaction is catalyzed by acid and alkaline hydrolysis. It is also able to form benzothiophenes and benzofurans through the same reaction. Ethyl 3-aminobenzofuran-2-carboxylate can be used in the synthesis of many other organic compounds, including phenacyl, carboxylic acids, pyridines, and aryl halides.</p>Formula:C11H11NO3Purity:Min. 95%Molecular weight:205.21 g/mol(2,5-Dimethyl-1H-indol-3-yl)acetic acid
CAS:<p>(2,5-Dimethyl-1H-indol-3-yl)acetic acid is a fine chemical that is used as a building block in research chemicals and as a reagent in the synthesis of more complex compounds. It has been used as a versatile building block for the synthesis of numerous biologically active compounds and has also been shown to have antiviral activity. This compound is also useful as an intermediate or scaffold in the synthesis of pharmaceuticals. (2,5-Dimethyl-1H-indol-3-yl)acetic acid has CAS number 5435-40-5 and can be found on PubChem CID 6078.</p>Formula:C12H13NO2Purity:Min. 95%Color and Shape:Red PowderMolecular weight:203.24 g/mol4-(4-Heptylphenyl)benzoic Acid
CAS:<p>4-(4-Heptylphenyl)benzoic Acid is a polyvinylpyrrolidone (PVP) derivative that has been used experimentally to create nanowires with directional response time. PVP is an amphiphile, which means it has both hydrophilic and hydrophobic properties. The nonionic nature of this polymer makes it suitable for use in aqueous environments. 4-(4-Heptylphenyl)benzoic Acid has been shown to have thermal stability up to 180°C, and when introduced at a high concentration (1 mM), yields of nanowires are high.</p>Formula:C20H24O2Purity:Min. 95%Color and Shape:White PowderMolecular weight:296.4 g/mol4-Piperidinobutyric acid
CAS:<p>The aim of this study is to assess the effect of 4-Piperidinobutyric acid (4-PABA) on the efficiency of rats in a dietary model. The experimental design included two treatments with different levels of 4-PABA, and a control group with no supplementation. The experiment was conducted by feeding rats a diet with low protein content (6% casein), and measuring their weight gain, feed intake, and food conversion ratio (FCR). The results indicated that 4-PABA had no statistically significant effects on weight gain or feed intake. However, FCR was significantly higher for the high 4-PABA treatment group. These findings support the hypothesis that dietary protein is an important determinant in rat energy metabolism.</p>Formula:C9H17NO2Purity:Min. 95%Molecular weight:171.24 g/mol4-Aminophthalic acid dimethyl ester
CAS:<p>4-Aminophthalic acid dimethyl ester is a product of the reaction between p-hydroxybenzoic acid and phosphorus pentachloride. It is used in analytical methods to determine the amount of 4-aminophthalic acid in an unknown sample. This product reacts with polyclonal antibodies against 4-aminophthalic acid, which are attached to a solid support, forming an antigen-antibody complex. The amount of 4-aminophthalic acid present can be determined by measuring the extent of the colour change that occurs when hydrochloric acid is added to the mixture.</p>Formula:C10H11NO4Purity:Min. 95%Color and Shape:SolidMolecular weight:209.2 g/mol2-[(Acetyloxy)methoxy]ethyl acetate
CAS:<p>2-[(Acetyloxy)methoxy]ethyl acetate is a drug that inhibits the enzyme orotidine 5′-monophosphate decarboxylase, which is responsible for the conversion of uridine to orotic acid. This inhibition prevents the synthesis of RNA and DNA and leads to cell death by inhibiting protein synthesis. 2-[(Acetyloxy)methoxy]ethyl acetate has shown tuberculostatic activity in leukemic mice, with an inhibition constant of 3.2 × 10 M. The compound also inhibits diphenolase activity, which is important in the production of uridine phosphorylase, an enzyme that produces uridine from orotic acid. 2-[(Acetyloxy)methoxy]ethyl acetate has been tested for its ability to inhibit herpes simplex virus (HSV) in vitro and in vivo and has been shown to be effective against HSV type 1 and HSV</p>Formula:C7H12O5Purity:Min. 95%Color and Shape:Colorless Clear LiquidMolecular weight:176.17 g/mol3-Fluoro-4-methylbenzoic acid methyl ester
CAS:<p>3-Fluoro-4-methylbenzoic acid methyl ester is a benzoate that can be converted to 3-fluoro-4-methylbenzoic acid (3FMB) by decarboxylation. 3FMB can be used in the synthesis of phenylacetic acid and other aromatic compounds. It also has been shown to function as a radical scavenger, which may have applications in medical research and treatment of neurodegenerative diseases. 3FMB has been shown to inhibit the growth of bacteria when it is applied topically or orally, due to its ability to inhibit DNA synthesis.</p>Formula:C9H9FO2Purity:Min. 95%Molecular weight:168.16 g/mol4-Hexyloxybenzoic acid
CAS:<p>4-Hexyloxybenzoic acid (4HB) is a white crystalline solid with a melting point of 137.8 °C. It has a molecular weight of 212.2 g/mol and a solubility in water of 0.1g/L at 25 °C. 4HB is not soluble in acetone, ether, or hexane and only slightly soluble in ethanol. The optical properties are: an extinction coefficient ε = 24700 M−1 cm−1, λmax = 318 nm, and λmax = 681 nm. 4HB is optically active with the dipole moment μ = 0.7 D and has an asymmetric hydrogen bond between the alkylthio group and hydroxy group, which gives it chemical stability against heat and light.</p>Formula:C13H18O3Purity:Min. 95%Color and Shape:PowderMolecular weight:222.28 g/mol2-Methylbenzo[d]oxazole-6-carboxylic acid
CAS:<p>2-Methylbenzo[d]oxazole-6-carboxylic acid (MBOCA) is a potent and selective antagonist of the histamine H4 receptor, which is expressed in high levels in the central nervous system. MBOCA has been shown to be an inhibitor of the binding of ligands to the H4 receptor, which regulates physiological processes such as gastric acid secretion and allergic inflammation. In vivo studies have demonstrated that MBOCA acts as a potent inhibitor of food intake in rats. This drug also has a high permeability across the blood brain barrier and into cells. The hydrochloride salt form of MBOCA has been shown to have better bioavailability than other salts due to its ability to cross biological membranes more easily.</p>Formula:C9H7NO3Purity:Min. 95%Molecular weight:177.16 g/molEthyl 4-biphenylacetate
CAS:<p>Ethyl 4-biphenylacetate is a fatty acid that inhibits the oxidation of lipids by inhibiting the synthesis of lipids. It also has an inhibitory effect on lipid metabolism and is used in the treatment of metabolic disorders. Ethyl 4-biphenylacetate has been shown to be effective against hepatitis and zearalenone, which are both metabolic diseases. It also reduces blood pressure in mice and rats, which may be due to its ability to inhibit the synthesis of lipids in blood vessels.</p>Formula:C16H16O2Purity:Min. 98 Area-%Color and Shape:PowderMolecular weight:240.3 g/moltert-Butyl 3-bromo-1H-indole-1-carboxylate
CAS:<p>Tert-Butyl 3-bromo-1H-indole-1-carboxylate is a versatile building block that can be used in the synthesis of complex compounds. It is a useful reagent and speciality chemical, as well as a useful intermediate in the production of research chemicals. Tert-Butyl 3-bromo-1H-indole-1-carboxylate has been found to be a useful scaffold for drug design and development, with potential applications in cancer treatment.</p>Formula:C13H14BrNO2Purity:Min. 95%Color and Shape:White To Off-White SolidMolecular weight:296.16 g/mol2-Benzyloxybenzoic acid
CAS:<p>2-Benzyloxybenzoic acid is a chemical compound that has been shown to have anticancer activity. It shares structural similarities with the drug methylphenidate, which is used to treat ADHD and narcolepsy. 2-Benzyloxybenzoic acid inhibits adenyl cyclase and methylation of proteins, leading to the inhibition of cancer growth. 2-Benzyloxybenzoic acid also has a role in the development of insulin resistance and hypertension by inhibiting conjugation reactions. This compound has been shown to have antiviral activity against HIV-1, influenza A virus, and human cytomegalovirus (CMV). It also has anti-inflammatory properties and exhibits potent antifungal activity against Candida albicans.</p>Formula:C14H12O3Purity:Min. 95%Color and Shape:White PowderMolecular weight:228.24 g/mol2-Aminothiophene-3-methyl carboxylate
CAS:<p>2-Aminothiophene-3-methyl carboxylate is a hydrogen bond that is derived from the amino acid methionine. It has been shown to have potent antitumor activity and can be used for the treatment of cancer. 2-Aminothiophene-3-methyl carboxylate has a molecular weight of 244.6 g/mol, an isolated yield of 0.68%, and a melting point of 245 °C.</p>Formula:C4H2SCOOCH3NH2Purity:Min. 95%Color and Shape:Yellow PowderMolecular weight:157.19 g/molMethyl 1-adamantylacetate
CAS:<p>Methyl 1-adamantylacetate is a synthetic fluorinated solvent that is used in aerosols. It is also known as trichloromonofluoromethane. Methyl 1-adamantylacetate has been shown to be an extractable and trackable solute in human biofluids and exhaled air.</p>Formula:C13H20O2Color and Shape:PowderMolecular weight:208.3 g/mol1-Hydroxyethylidene-1,1-diphosphonic acid - 60% aqueous solution,~4.2mol/L
CAS:<p>1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP) is a phosphonate that has been used as an inhibitor of the enzyme histone deacetylase. HEDP inhibits collagen production and root formation in cells. It also inhibits the uptake and mineralization of calcium by skin cells. HEDP has a strong inhibitory effect on protein synthesis, which may be due to its ability to bind to the active site of the enzyme protein kinase. In a short-term exposure experiment using an experimental model, HEDP caused significant cellular damage in the skin, which included increased cell death and decreased cell proliferation. HEDP also caused severe disruption of collagen fibers in the dermis layer of the skin.</p>Formula:C2H8O7P2Purity:(Titration) 59.0 To 65.0%Color and Shape:White Clear LiquidMolecular weight:206.03 g/mol6-Phenylhexanoic acid
CAS:<p>6-Phenylhexanoic acid is a fatty acid that is biosynthesized by microbial metabolism. It has been shown to be an analog of dodecanedioic acid and has been used in the structural studies of recombinant proteins. 6-Phenylhexanoic acid has also been shown to have anticancer activity, although it does not inhibit lipid synthesis or promote apoptosis.</p>Formula:C12H16O2Purity:Min. 95%Color and Shape:LiquidMolecular weight:192.25 g/mol7-Amino-3-chloro cephalosporanic acid
CAS:<p>7-Amino-3-chloro cephalosporanic acid is a molecule that can be used to synthesize the drug cefaclor. It is a synthetic compound that has been shown to have anticancer activity and antibacterial activity. This molecule is an ester hydrochloride and has a bulk density of 1.2 g/cm³. 7-Amino-3-chloro cephalosporanic acid is activated by hydrochloric acid in the presence of an organic solvent, such as ethyl acetate, at room temperature. The molecule is also bioactive and its expression can be induced by adding an activator, such as sodium butyrate or benzyl alcohol, to the medium.br>br><br>7-Amino-3-chloro cephalosporanic acid exhibits antibacterial activity against Gram positive bacteria, such as Bacillus subtilis and Staphylococcus epidermid</p>Formula:C7H7ClN2O3SPurity:Min. 95%Color and Shape:PowderMolecular weight:234.66 g/mol(R)-3-Hydroxy myristic acid dicyclohexylammonium salt
CAS:Controlled Product<p>(R)-3-Hydroxy myristic acid dicyclohexylammonium salt is a fine chemical that is used as a versatile building block for the synthesis of complex compounds. It has been used as a reagent and speciality chemical in research and as a high-quality, useful intermediate. It can be used in the synthesis of new drugs, such as anti-inflammatory agents. (R)-3-Hydroxy myristic acid dicyclohexylammonium salt is also an interesting scaffold for the development of new drugs or drug leads against various diseases.</p>Formula:C26H51NO3Purity:Min. 95%Color and Shape:White to off-white solid.Molecular weight:425.69 g/mol3,6-Difluoro-2-hydroxybenzoic acid methyl ester
CAS:<p>3,6-Difluoro-2-hydroxybenzoic acid methyl ester is a combination of two substances that are used as deodorants and antiperspirants. They work by blocking the pores in the skin, which prevents perspiration and reduces body odor. 3,6-Difluoro-2-hydroxybenzoic acid methyl ester is not an anti-inflammatory drug.</p>Formula:C7H4F2O3Purity:Min. 95%Molecular weight:174.1 g/mol2-Cyclohexylethenylboronic acid
CAS:<p>2-Cyclohexylethenylboronic acid is an intermediate in the synthesis of petasis, a drug that is used to treat epilepsy. This compound is enantioenriched and diastereoselectively synthesized from 2-bromoethanol and cyclohexene with sodium acetate as the catalyst. The method for synthesis includes the addition of boron trifluoride etherate to the reaction mixture, which produces aldehydes in an enantiomeric ratio of greater than 99%.</p>Formula:C8H15BO2Purity:Min. 95%Color and Shape:SolidMolecular weight:154.01 g/mol(Z)-2-(5-Amino-1,2,4-thiadiazol-3-yl)-2-(ethoxyimino)acetic acid
CAS:<p>(Z)-2-(5-Amino-1,2,4-thiadiazol-3-yl)-2-(ethoxyimino)acetic acid is a synthetic compound that can be used as an antibiotic. It is synthesized from acetonitrile and phosphorus oxychloride in the presence of hydroxyl groups. This reaction yields a mixture of amides and cyanoacetamide derivatives. The amides are then converted to their respective alkyl chlorides with methyl iodide, which are then reacted with dimethyl acetylenedicarboxylate to form the desired product. The final step is to hydrolyze the ester group with hydrochloric acid to yield (Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(ethoxyimino)acetic acid. This chemical has been shown to have antibacterial properties against some strains of bacteria such as</p>Formula:C6H8N4O3SPurity:Min. 95%Color and Shape:PowderMolecular weight:216.22 g/mol3-(3-Fluoro-4-methoxybenzoyl)propionic acid
CAS:<p>3-(3-Fluoro-4-methoxybenzoyl)propionic acid is a versatile building block that is used in the synthesis of many organic compounds. 3-(3-Fluoro-4-methoxybenzoyl)propionic acid has been used as a reagent in the synthesis of pharmaceuticals and other chemicals. 3-(3-Fluoro-4-methoxybenzoyl)propionic acid can be used to produce high quality research chemicals, speciality chemicals, and fine chemicals. This compound is also used to produce complex compounds and useful intermediates. 3-(3-Fluoro-4-methoxybenzoyl)propionic acid is available through chemical suppliers such as Sigma Aldrich or Acros Organics.</p>Formula:C11H11FO4Purity:Min. 95%Molecular weight:226.2 g/mol3-Methyl-6-nitro-2,4,5-trifluorobenzoic acid
CAS:<p>3-Methyl-6-nitrobenzoic acid is a chemical intermediate in the production of nitrobenzene, which is used as a precursor to other chemicals. It can be used for the synthesis of 3-methyl-6-nitrobenzoic acid (used in the synthesis of pesticides) and 3,5-dimethyl-2,4,6-trinitrobenzoic acid (used in the synthesis of dyes). This chemical has been recrystallized and contains less than 1% impurities such as halogens or methylbenzoic acid.</p>Formula:C8H4F3NO4Purity:Min. 95%Molecular weight:235.12 g/mol2,5-Dimethylphenylacetic acid
CAS:<p>2,5-Dimethylphenylacetic acid is a synthetic compound that is also known as 2,5-DMPAA. It is used in the synthesis of a variety of compounds, such as pharmaceuticals and agricultural chemicals. It can be synthesized by reacting hydrochloric acid with morpholine and magnesium chloride. The reaction system produces water as a byproduct and requires an acidic environment with a pH less than 7. The impurities present in 2,5-DMPAA are chloromethylation products which can be removed by chlorination or saponification.<br>2,5-DMPAA has been shown to increase salinity tolerance in plants when applied at low concentrations (1mM).</p>Formula:C10H12O2Purity:Min. 95%Color and Shape:PowderMolecular weight:164.2 g/mol2-Fluoro-5-hydroxybenzoic acid ethyl ester
CAS:<p>2-Fluoro-5-hydroxybenzoic acid ethyl ester is a fine chemical that is used as a versatile building block, complex compound, and reagent. It has been used in the synthesis of novel drugs, such as oseltamivir. 2-Fluoro-5-hydroxybenzoic acid ethyl ester has been shown to have useful properties in research, such as being an intermediate for the synthesis of other compounds. This chemical can also be used as a scaffold for the synthesis of other compounds.</p>Formula:C9H9FO3Purity:Min. 95%Molecular weight:184.16 g/mol3,4-Dimethoxyphenylboronic acid
CAS:<p>3,4-Dimethoxyphenylboronic acid is a boronate ester that has been shown to be an effective coupling partner for the Suzuki reaction. It has also been used in cancer therapy and as a photochemical probe for the study of biological properties. 3,4-Dimethoxyphenylboronic acid has been shown to demethylate DNA and inhibit methionine aminopeptidase activity. It also cross-couples with halides, such as chlorides or iodides, and activates tertiary alcohols. 3,4-Dimethoxyphenylboronic acid is soluble in organic solvents and can be used in supramolecular chemistry.</p>Formula:C8H11BO4Purity:Min. 95%Color and Shape:White PowderMolecular weight:181.98 g/mol3-Acetamidobenzoic acid
CAS:<p>3-Acetamidobenzoic acid is a metabolite of erythromycin. It is used as a contrast agent in radiocontrast studies, and has also been used to immobilize enzymes. 3-Acetamidobenzoic acid can be synthesized from erythromycin by methylation with metrizamide or methyl alcohol. The reaction rate of this compound is slow, which makes it an excellent candidate for immobilization on cation exchange resins. 3-Acetamidobenzoic acid has functional groups that are primary amines, making it a good substrate for the enzyme aminopeptidase. This compound also reacts with methylamine to form 3-methylaminobenzoic acid, which is a competitive inhibitor of the enzyme methylaminopeptidase.</p>Formula:C9H9NO3Purity:Min. 95%Color and Shape:PowderMolecular weight:179.17 g/molMethyl 1-ethyl-3-methyl-1H-pyrazole-5-carboxylate
CAS:<p>Methyl 1-ethyl-3-methyl-1H-pyrazole-5-carboxylate is a fine chemical that can be used as a building block in organic synthesis. It has been shown to provide a useful intermediate in the synthesis of other compounds, such as medicinal products and pesticides. Methyl 1-ethyl-3-methyl-1H-pyrazole-5-carboxylate is also a versatile building block for the manufacture of complex compounds. CAS No. 88398–73–6</p>Formula:C8H12N2O2Purity:Min. 95%Color and Shape:Colorless PowderMolecular weight:168.19 g/molZ-L-pyroglutamic acid 4-nitrophenyl ester
CAS:<p>Please enquire for more information about Z-L-pyroglutamic acid 4-nitrophenyl ester including the price, delivery time and more detailed product information at the technical inquiry form on this page</p>Formula:C19H16N2O7Purity:Min. 95%Molecular weight:384.34 g/mol[4-(Allyloxy)phenyl]boronic acid
CAS:<p>4-(Allyloxy)phenylboronic acid is an intermediate in the manufacture of pharmaceuticals and other organic compounds. It can be used as a building block for more complex compounds and as a reagent in organic synthesis. 4-(Allyloxy)phenylboronic acid is soluble in water and has a melting point of >200°C. This compound is a fine chemical with CAS No. 1117776-68-7 and is useful for research purposes.</p>Formula:C9H11BO3Purity:Min. 95%Color and Shape:White PowderMolecular weight:177.99 g/mol4-[Bis(2-hydroxypropyl)amino]benzoic acid ethyl ester, 90%
CAS:<p>4-[Bis(2-hydroxypropyl)amino]benzoic acid ethyl ester is an absorber that is used in the production of cationic surfactants. It has been shown to have clinical properties and can be combined with antibiotics for the treatment of inflammatory diseases. 4-[Bis(2-hydroxypropyl)amino]benzoic acid ethyl ester is also used as a radiation absorber, which prevents the formation of free radicals by absorbing radiation. This drug also has an antioxidant effect and may protect skin cells from damage caused by UV light.</p>Formula:C15H23NO4Purity:Min. 95%Color and Shape:Yellow PowderMolecular weight:281.35 g/molBenzenesulfonic acid
CAS:<p>Benzenesulfonic acid is a sulfonic acid that is used in the preparation of glycol esters. It has been shown to have a synergic effect with trifluoroacetic acid and human serum, which leads to potent antitumor activity. Benzenesulfonic acid also has a strong inhibitory effect on sodium salts and benzimidazole compounds, which are model systems for studying the dihydrate salt form. This compound can be used as an analytical method for determining the structure of benzenesulfonic acids.</p>Formula:C6H6SO3Purity:Min. 95%Color and Shape:Off-White To Brown SolidMolecular weight:158.18 g/mol3-Nitrophenylacetic acid
CAS:<p>3-Nitrophenylaceticacid (3NPAA) is a nitro compound that is used as an intermediate in the synthesis of other organic compounds. It can be synthesized by reacting phenylacetic acid with nitric acid, which is then oxidized to 3-nitrophenol with potassium permanganate. The product is then reacted with acetic anhydride to produce 3-nitrophenylacetic acid. This chemical has been shown to inhibit plant physiology and chlorophyll production by binding reversibly to the protein photosystem II in plants. 3-Nitrophenylaceticacid reacts with chloride ions to form a reversible covalent bond, which may be hydrolyzed by water or alkali.</p>Formula:C8H7NO4Purity:Min. 95%Color and Shape:PowderMolecular weight:181.15 g/molHeptadecanoic acid
CAS:<p>Heptadecanoic acid is a fatty acid that is a major component of the human sebum. It has been shown to be an oxidation catalyst for polyunsaturated fatty acids and can be used in the production of caproic acid and alkanoic acid from their corresponding glycol esters. It has also been shown to have enzyme activities, such as oxidizing phospholipids and hydrolyzing triglycerides. Heptadecanoic acid is a normal constituent of human serum, but its concentration varies among individuals. It can be used as a control analysis to determine if another fatty acid is present in the sample, or it can be used as a biological sample to study energy metabolism or epidermal growth factor.</p>Formula:C17H34O2Purity:Min. 95%Color and Shape:PowderMolecular weight:270.45 g/molTiglic acid
CAS:<p>Tiglic acid is a sodium salt that can be synthesized in an asymmetric synthesis. It is a white crystalline powder with a melting point of 190-191°C. Tiglic acid has been shown to increase the activity of cinchonidine, which is a compound often used to treat eye disorders and chronic arthritis. Tiglic acid also has the ability to bind to fatty acids, which may be due to hydrogen bonding interactions. In vitro assays have shown that tiglic acid's antimicrobial properties are related to its ability to cause cell lysis by interacting with fatty acids on the cell membrane.</p>Formula:C5H8O2Purity:Min. 95%Color and Shape:PowderMolecular weight:100.12 g/mol2-Fluoro-5-methylpyridine-3-boronic acid
CAS:<p>2-Fluoro-5-methylpyridine-3-boronic acid is a high quality chemical with CAS No. 1072952-45-4 that is a useful building block for the synthesis of complex compounds and speciality chemicals. 2-Fluoro-5-methylpyridine-3-boronic acid is also a versatile building block that can be used in organic reactions as a reaction component for the synthesis of speciality chemicals and other reagents. It can also be used to make fluoroquinolones and related pharmaceuticals, which are used to treat bacterial infections. This compound has many uses in research, including being a valuable scaffold for the synthesis of new drugs.</p>Formula:C6H7BFNO2Purity:Min. 95%Color and Shape:White PowderMolecular weight:154.93 g/mol2-Thenoic acid
CAS:<p>2-Thenoic Acid is an experimental drug that binds to and inhibits the activity of inhibitor molecules. It has been shown to inhibit the growth of a number of pathogens, including Mycobacterium tuberculosis and Mycobacterium avium complex. 2-Thenoic acid also inhibits the production of picolinic acid, which is a key intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD). 2-Thenoic acid is not active against methicillin resistant Staphylococcus aureus (MRSA) isolates, but has been shown to be effective against some strains of Clostridium perfringens. The structure of 2-thenoic acid was determined using X-ray crystallography and electrochemical impedance spectroscopy. This molecule binds to palladium in an octahedral coordination geometry with two nitrogen atoms from the carboxylic acid moiety forming direct bonds with palladium.</p>Formula:C5H4O2SPurity:Min. 95%Color and Shape:PowderMolecular weight:128.15 g/mol3,5,6-Trichloro-4-hydroxy-2-picolinic acid
CAS:<p>3,5,6-Trichloro-4-hydroxy-2-picolinic acid is a high quality reagent that is used as a building block for the synthesis of complex compounds with potential pharmaceutical applications. It can be used as an intermediate in the production of fine chemicals and speciality chemicals. This compound is also useful for research purposes and as a versatile building block for reactions.</p>Formula:C6H2Cl3NO3Purity:Min. 95%Color and Shape:White to off-white solid.Molecular weight:242.44 g/molPhenylazosalicylic acid
CAS:<p>Phenylazosalicylic acid is a crystalline solid that belongs to the group of phenylacetic acids. It is synthesized by the reaction of nitric acid with salicylic acid, which is produced from the distillation of wood. Phenylazosalicylic acid has a molecular weight of 150.09 g/mol and a melting point of 123°C. The molecule is unionized in water and can be found in wastewater effluent at concentrations as high as 3 ppm. This compound has acidic properties and reacts with picric acid to form phenylazosalicylic picrate, which is used for the treatment of anthrax. Phenylazosalicylic acid also shows proton-pumping activity, which may be due to its ability to bind to anionic sites on proteins such as carbonic anhydrase II and H+/K+ ATPase.</p>Formula:C13H10N2O3Purity:Min. 95%Color and Shape:Orange PowderMolecular weight:242.23 g/mol4-Hydroxybenzoic acid 2-hydroxyethyl ester
CAS:<p>4-Hydroxybenzoic acid 2-hydroxyethyl ester is an organic compound that is used in the synthesis of other organic compounds. It can be synthesized from benzoic acid by reaction with ethanol and sodium hydroxide. The product of this reaction is a mixture of 4-hydroxybenzoic acid 2-hydroxyethyl ester, benzoic acid, and equimolar amounts of 2-hydroxyethanol and ethyl alcohol. The hydrolysis of the ester group in 4-hydroxybenzoic acid 2-hydroxyethyl ester produces benzoic acid and ethyl alcohol. The alkylation reaction of the anion in 4-hydroxybenzoic acid 2-hydroxyethyl ester with deuterated benzene yields quantitatively benzaldehyde deuterated at one position on the benzene ring. This compound may also be used as a marker for hydrogen atoms that have been substituted with deuter</p>Formula:C9H10O4Purity:Min. 95%Molecular weight:182.17 g/molCopper(II) diethyldithiocarbamate
CAS:<p>Copper(II) diethyldithiocarbamate is a reactive chemical that has been extensively studied. The mechanism of its reaction with hydrochloric acid is well understood. Copper(II) diethyldithiocarbamate reacts with hydrochloric acid to form the copper complex and Zn(II) diethyldithiocarbamate. Copper complexes are known for their high resistance to oxidation, which makes them stable in analytical chemistry. This stability also contributes to their clinical relevance as they can be used in prostate cancer cells without causing oxidative damage. Copper(II) diethyldithiocarbamate is used in analytical chemistry because it reacts with ethylene diamine to produce an intense color change, which can be detected by eye or spectrophotometrically.</p>Formula:C10H20CuN2S4Color and Shape:PowderMolecular weight:360.09 g/molAminooxyacetic acid hydrochoride
CAS:<p>Aminooxyacetic acid hydrochoride is a nitric oxide synthase inhibitor that binds to the active site of the enzyme and prevents it from producing nitric oxide. Nitric oxide is an important molecule in many biological processes, such as vasodilation, neurotransmission, and cell signaling. This inhibitor has been shown to be effective against a number of cancers including prostate cancer cells and breast cancer cells. Aminooxyacetic acid hydrochoride has also been shown to increase the expression of basic proteins in neuronal cells and inhibit DNA synthesis by binding to polymerase chain reaction primers. It also inhibits α7 nicotinic acetylcholine receptors, which are involved in learning and memory. A matrix effect on wild-type strains has been observed when aminooxyacetic acid hydrochloride is added to culture media as well.</p>Formula:C2H4NO3•HClColor and Shape:White Off-White PowderMolecular weight:91.07 g/molTAPS
CAS:<p>TAPS, also known as 3-[(Tris(hydroxymethyl)methyl)amino]-1-propanesulfonic acid, is a buffering agent that can be used in capillary electrophoresis with DNA and can form metal complexes. It has an optimal pH range of 7.7-9.1 and a pKa of 8.4.</p>Formula:C7H17NO6SPurity:Min. 95%Color and Shape:SolidMolecular weight:243.28 g/mol4-Fluorophenyl-5'-oxobutyric acid
CAS:<p>4-Fluorophenyl-5'-oxobutyric acid is an antithrombotic agent that is a member of the group of desfluoro compounds. It is produced by introducing an asymmetric fluorine atom into the molecule, which changes the chemical properties and increases the stability of this compound. 4-Fluorophenyl-5'-oxobutyric acid has been shown to have potent antiplatelet activity in rats with induced stroke and may be used as a feedstock for biofuels or pharmaceuticals. This compound has been shown to increase levels of high density lipoprotein cholesterol (HDL) and decrease levels of low density lipoprotein cholesterol (LDL).<br>4-Fluorophenyl-5'-oxobutyric acid has been found to inhibit the enzyme dehydrogenase, which may be responsible for its antithrombotic effects. The increased stability due to asymmetric fluorination also leads to higher kinetic constants, which</p>Formula:C11H11FO3Purity:Min. 95%Color and Shape:White PowderMolecular weight:210.2 g/mol4-(Trifluoromethylthio)benzoic acid
CAS:<p>4-(Trifluoromethylthio)benzoic acid is a versatile building block, useful intermediate, and reagent for research and development. 4-(Trifluoromethylthio)benzoic acid has been shown to be a high quality chemical with high purity. The CAS number for 4-(Trifluoromethylthio)benzoic acid is 330-17-6.</p>Formula:C8H5F3O2SPurity:Min. 98 Area-%Color and Shape:PowderMolecular weight:222.19 g/mol2-Chloro-6-methylnicotinic acid
CAS:<p>2-Chloro-6-methylnicotinic acid is a protonated nicotinic acid derivative with potent inhibitory activity against hepatitis C virus. It has been shown to inhibit the replication of the virus by competitive inhibition at the 2-chloro-6-methylnicotinic acid site on the viral genome. It also inhibits the synthesis of viral proteins, which are necessary for viral replication. The molecule has been shown to have an inhibitory effect on other RNA viruses such as influenza and HIV, but it is not active against DNA viruses such as herpes simplex or adenovirus. 2-Chloro-6-methylnicotinic acid is absorbed orally and its pharmacokinetic properties are well understood. This compound can be used as a probe in supramolecular chemistry to study hydrogen bonding and biomolecular interactions.</p>Formula:C7H6ClNO2Purity:Min. 95%Color and Shape:Yellow SolidMolecular weight:171.58 g/mol4-Iodophenylboronic acid
CAS:<p>4-Iodophenylboronic acid is a chemical compound that has been shown to bind to disaccharides and form hydrogen bonding interactions. It has also been shown to enhance the chemiluminescence of ethylene diamine in a light emission assay, which is due to its ability to bind to fatty acids. 4-Iodophenylboronic acid has been used in studies on tumor xenografts and optical properties. 4-Iodophenylboronic acid has also been shown to have vibrational and nmr spectra that differ from other boronic acids. This compound is unique because it binds with water molecules more strongly than any other boronic acid.</p>Formula:C6H6BIO2Purity:Min. 95%Color and Shape:PowderMolecular weight:247.83 g/molNb[n-N-butyl-N-acetyl]aminopropionic acid ethyl ester
CAS:<p>Nb[n-N-butyl-N-acetyl]aminopropionic acid ethyl ester is a nitro compound that can be used as a repellent. It is often used in pharmaceutical preparations, such as topical and oral medications. The Nb[n-N-butyl-N-acetyl]aminopropionic acid ethyl ester molecule has nitrogen atoms with two hydrogens each, which are separated by an oxygen atom. This makes it a polar molecule because the hydrogen atoms are not on the same side of the molecule. The Nb[n-N-butyl-N-acetyl]aminopropionic acid ethyl ester also contains two carboxylic acids, which are fatty acids with one carbon atom and two hydrogens each. This makes it an organic compound that can be analyzed using gas chromatography or high performance liquid chromatography.</p>Formula:C11H21NO3Purity:Min. 95%Color and Shape:Clear LiquidMolecular weight:215.29 g/mol3-Hydroxyanthranilic acid Hydrochloride
CAS:<p>3-Hydroxyanthranilic acid hydrochloride is a prodrug of 3-hydroxyanthranilic acid. It is metabolized by the liver to 3-hydroxyanthranilic acid, which inhibits the synthesis of proteins and blocks the formation of bacterial cell walls. The carboxyl group on this drug attaches to a hydrogen atom on the phenol group and forms a hydrogen bond with a protonated chloride atom to form an ionic bond. This drug also has an amino group that can donate a proton to become positively charged.</p>Formula:C7H7NO3·ClHPurity:Min. 95%Molecular weight:189.6 g/molUndecenoic acid
CAS:<p>Undecenoic acid is an antimicrobial agent that is used in the treatment of infectious diseases. This compound has been shown to have significant cytotoxicity against C. glabrata, a yeast that causes vaginal yeast infections, and also inhibits the growth of other human pathogens such as Listeria monocytogenes and Salmonella typhimurium. Undecenoic acid has a broad spectrum of activity against bacteria and fungi and is effective when used at low concentrations. It is not active against viruses or protozoa. The reaction mechanism for undecenoic acid is unknown but it may be due to its ability to react with water vapor in the air to form undecenal, which then reacts with malonic acid to form malonaldehyde. Undecenoic acid binds to proteins through hydrogen bonding and hydrophobic interactions, forming complexes that inhibit bacterial growth by interfering with DNA replication, protein synthesis, and enzyme activity.</p>Formula:C11H20O2Purity:Min. 95%Color and Shape:PowderMolecular weight:184.28 g/mol5-Amino-1,3,4-thiadiazole-2-carboxylic acid
CAS:<p>5-Amino-1,3,4-thiadiazole-2-carboxylic acid is a benzene derivative that can be used as a fluorescent probe for the detection of anions. It has high specificity and sensitivity to chloride ions, which is due to its ability to form a five membered ring with the chloride ion. This molecular structure gives 5-amino-1,3,4-thiadiazole-2-carboxylic acid its characteristic fluorescence emission spectrum. The optimum conditions for the reaction are at pH 7.0 and room temperature with a concentration of 0.1 M in water. The reactivity of 5-amino-1,3,4-thiadiazole 2 carboxylic acid is increased by the presence of thiourea and naphthalene.</p>Formula:C3H3N3O2SPurity:Min. 95%Color and Shape:PowderMolecular weight:145.14 g/molGly-His-Lys acetate salt
CAS:Controlled Product<p>Gly-His-Lys acetate salt is a module that is used in the desiccant industry and has diameters between 1mm and 5mm. The diameter of this product is statistically greater than other products in the same category. This product is made of aluminum, which provides high thermal conductivity, while also being an excellent desiccant due to its low cost. It can be used in both solar and ulta-fine applications. This product is most commonly used for colonoscopy procedures as it can be easily excised from polyester film.</p>Formula:C14H24N6O4·C2H4O2Purity:Min. 95%Color and Shape:SolidMolecular weight:400.43 g/mol4,5-Difluoro-3-hydroxybenzoic acid
CAS:<p>4,5-Difluoro-3-hydroxybenzoic acid is a chemical intermediate that is used in the production of 4,5-difluoro-3-hydroxyphenylacetic acid. The process development of this compound was carried out to produce indian refractories and discontinuity. It has been envisaged that monocrystalline postulated treatments will be required for the ancillary transfer of beneficiation and magnesite advances as well as isoxazolidines.</p>Formula:C7H4F2O3Purity:Min. 95%Color and Shape:PowderMolecular weight:174.1 g/mol3-Iodobenzoic acid methyl ester
CAS:<p>3-Iodobenzoic acid methyl ester is a synthetic selenium compound that is used in the synthesis of fatty acids. It is also used as a radionuclide in the diagnosis of cancer and other diseases. 3-Iodobenzoic acid methyl ester can be taken orally or injected, but it should not be taken by pregnant women or those who are allergic to iodine. This product has been shown to have anti-cancer properties when given orally, although there are some potential side effects associated with usage. These side effects include nausea, vomiting, diarrhea, and an increase in urine production. 3-Iodobenzoic acid methyl ester is metabolized into toxic products such as biphenyl, which may cause an escalation of symptoms. The structural formula for this product is C8H7INOS2O2.</p>Formula:C8H7IO2Purity:Min. 95%Color and Shape:PowderMolecular weight:262.04 g/mol2-Hydroxyisonicotinic acid
CAS:<p>2-Hydroxyisonicotinic acid is a synthetic analog of isonicotinic acid that is used as a nonheme iron chelator. It has been shown to inhibit the growth of cavity-causing bacteria in vitro by binding to iron enzymes, such as methane monooxygenase and n-oxide reductase. 2-Hydroxyisonicotinic acid inhibits bacterial growth by binding to the enzyme complexes containing iron, thereby inhibiting the synthesis of fatty acids and pyridine compounds. X-ray crystal structures have also shown that this compound binds to the nonheme iron at two sites, which may explain its ability to inhibit bacterial growth.</p>Formula:C6H5NO3Purity:Min. 95%Color and Shape:PowderMolecular weight:139.11 g/molRhizocarpic acid
CAS:<p>Rhizocarpic acid is a naturally occurring organic compound that belongs to the group of polyhydroxy acids. It is a light-sensitive, acidic compound with a hydroxyl group and a multidrug efflux pump. Rhizocarpic acid has been shown to have metabolic profiles that are similar to those of other polyhydroxylated compounds and it is thought to be an intermediate in the biosynthesis of usnic acid. Rhizocarpic acid can be used as a low-light photosynthetic activator for plants, because it enhances their photosynthetic activity under conditions where light intensity is not high enough for photosynthesis. The FT-IR spectroscopy data indicates that rhizocarpic acid has three carbonyl groups in its structure and these groups are responsible for its acidic nature.</p>Formula:C28H23NO6Purity:Min. 95%Molecular weight:469.49 g/mol2-(Trifluoromethoxy)phenylboronic acid
CAS:<p>2-(Trifluoromethoxy)phenylboronic acid (2-TFB) is a boronic acid that is used in cross-coupling reactions. It has been shown to be an effective inhibitor of the Vismodegib pathway, which may offer therapeutic benefits for cancer patients. 2-TFB has also been shown to inhibit the activity of other pathways involved in cancer development, such as the benzamide and suzuki pathways. 2-TFB is metabolized through filtration, which can lead to significant pharmacokinetic properties. This compound can be recycled and reused in cross-coupling reactions, which reduces waste production and costs.</p>Formula:C7H6BF3O3Purity:Min. 95%Color and Shape:PowderMolecular weight:205.93 g/mol4-Hydroxy-3-nitrobenzoic acid
CAS:<p>4-Hydroxy-3-nitrobenzoic acid is an antioxidant that has been studied for its potential therapeutic effects on pancreatitis. This compound is a precursor to protocatechuic acid, a molecule that helps to protect the pancreas. 4-Hydroxy-3-nitrobenzoic acid is also used in the preparation of hydroxide solution and activated carbon. The terminal half-life of this compound is approximately 15 hours, with a plasma concentration–time curve that peaks at about 2 hours after administration. The biological activity of 4-Hydroxy-3-nitrobenzoic acid can be increased by reaction with sodium hydroxide solution or 5 nitrosalicylic acid.</p>Formula:C7H5NO5Purity:Min. 95%Molecular weight:183.12 g/molTriethyl phosphonoacetate
CAS:<p>Triethyl phosphonoacetate is a dpp-iv inhibitor that has been shown to have beneficial effects on congestive heart failure. It is a pyrimidine compound that can be synthesized in an asymmetric synthesis reaction. The hydroxyl group on the triethyl phosphonoacetate molecule reacts with potassium dichromate to form a reactive intermediate, which undergoes hydrolysis by hydrochloric acid to release acetaldehyde. Acetaldehyde then reacts with malonic acid to produce triethyl phosphonoacetate. Triethyl phosphonoacetate has been shown to have biological properties that are similar to those of other dpp-iv inhibitors, and it has also been shown to have receptor binding activity.</p>Formula:C8H17O5PPurity:Min. 98%Color and Shape:Colorless Clear LiquidMolecular weight:224.19 g/molPhenylhydrazine-4-sulfonic acid
CAS:<p>Phenylhydrazine-4-sulfonic acid is a solid catalyst that is used in the formation of ternary complexes. It can be used to study mitochondrial membrane potential and reactive oxygen species production by diazonium salt. Phenylhydrazine-4-sulfonic acid has also been used as a model system for acylation reactions, with p-hydroxybenzoic acid as the acylating agent. This chemical is acidic and reacts with hydrochloric acid to produce phenylhydrazine and 4-chlorophenol. Phenylhydrazine-4-sulfonic acid is chemically stable in acidic solution.</p>Formula:C6H8N2O3SPurity:Min. 95%Color and Shape:White PowderMolecular weight:188.21 g/mol4-Fluorocinnamic acid
CAS:<p>4-Fluorocinnamic acid is a potent inhibitor of bacterial growth. It inhibits the activity of enzymes that are involved in the synthesis of fatty acids and amino acids, such as triticum aestivum and trifluoroacetic acid. 4-Fluorocinnamic acid has been shown to be an effective inhibitor of bacterial growth in vitro, with a contact time of 10 minutes. The effective dose for this compound was determined to be 1 mg/L. 4-Fluorocinnamic acid has also been found to have a mineralization effect on wastewater treatment and can inhibit the activity of enzymes involved in the production of inflammatory mediators, such as lipoxygenase and cyclooxygenase.</p>Formula:C9H7FO2Purity:Min. 95%Color and Shape:PowderMolecular weight:166.15 g/molPiperazine-2-carboxylic acid
CAS:<p>Piperazine-2-carboxylic acid is an amide that is a precursor to glutamate, ethylene diamine, and piperazine. It has been shown to be an enantiomer of piperazine. Piperazine-2-carboxylic acid is used in the production of various pharmaceuticals, including anticonvulsants and antiparasitic drugs. It is also used as a biochemical reagent for kinetic studies and as an orally administered drug for the treatment of inorganic acidosis.</p>Formula:C5H10N2O2Purity:Min. 95%Color and Shape:White PowderMolecular weight:130.15 g/mol2-Propoxy benzoic acid
CAS:<p>2-Propoxy benzoic acid is a hydroxybenzoic acid that is used as a dietary supplement. It has been shown to have anti-inflammatory and antioxidant effects in animal models of degenerative diseases, such as trigeminal neuralgia and Parkinson's disease. 2-Propoxy benzoic acid can be synthesized from propionate by acetylation with acetic anhydride. 2-Propoxy benzoic acid is also found in the human body as a result of light exposure, which signifies the presence of reactive functional groups on the hydrocarbon chain. These reactive functional groups are cyclohexane rings that can be metabolized into fatty acids.</p>Formula:C10H12O3Purity:Min. 95%Molecular weight:180.2 g/mola-Cyanocinnamic acid
CAS:<p>a-Cyanocinnamic acid is a 3-hydroxycinnamic acid that can be found in coffee. It has been shown to inhibit the growth of colorectal adenocarcinoma cells and other cancer cells by binding to an inhibitor site on fatty acid synthesis enzymes, such as pyruvate carboxylase, hydroxylase, and acetyl-CoA carboxylase. This inhibition leads to decreased levels of fatty acids and increased levels of pyruvate and hydrogen peroxide, which inhibits cell proliferation. In addition, a-cyanocinnamic acid has been shown to have a hypoxic tumor selectivity index of 10.7%, which means it selectively targets tumors with low oxygen levels.</p>Formula:C10H7NO2Purity:Min. 95%Color and Shape:White PowderMolecular weight:173.17 g/mol3-Formylphenylboronic acid - 80%
CAS:<p>3-Formylphenylboronic acid is an apical ligand with a phenylpropionic acid substituent. It has been shown to have hypoglycemic effects in rats, and binding constants for proteins ranging from 10 μM to 1 mM. 3-Formylphenylboronic acid binds to the chelate ligand of a macrocyclic structure, which is a molecule consisting of two or more rings that are linked together. This compound has been shown to have inhibitory effects on both the enzyme (vibrational) and fluorescence resonance energy transfer (FRET).</p>Formula:C7H7BO3Purity:Min. 95%Color and Shape:PowderMolecular weight:149.94 g/mol2-Isopropyl-1,3-dioxane-5-carboxylic acid
CAS:<p>2-Isopropyl-1,3-dioxane-5-carboxylic acid is an organic compound that contains a chloride atom. It is a colorless liquid that has no distinctive odor and is soluble in water. 2-Isopropyl-1,3-dioxane-5-carboxylic acid can be obtained by condensation of two molecules of acetone with chloroacetic acid. The molecular formula for 2-isopropyl-1, 3 dioxane 5 carboxylic acid is C6H12O4. Elemental analysis shows that it contains approximately 39% carbon, 59% hydrogen, and 4% chlorine.</p>Formula:C8H14O4Purity:Min. 95%Molecular weight:174.19 g/mol2,6-Dihydroxy-4-methylbenzoic acid copper
CAS:<p>2,6-Dihydroxy-4-methylbenzoic acid copper salt is an organic compound with a skeleton of two benzene rings. The molecule contains a chloride ion coordinated to the copper atom and a methyl group adjacent to the copper atom. This compound has significant cytotoxicity against human cancer cells. It is also an endophytic fungus found in plants that produces ethyl esters of 2,6-dihydroxy-4-methylbenzoic acid copper salt. The chemical structures of this compound are shown in Figure 1 below: Figure 1 The reaction products are 2,6-dichloroquinone and benzoic acid. The reaction solution is a dark red color due to the presence of free quinone groups. This compound has been synthesized using Friedel-Crafts reactions, which were carried out in chloroform and dichloromethane at temperatures ranging from -78°C to room temperature for up to 12</p>Formula:C16H16O8•CuPurity:Min. 95%Molecular weight:399 g/mol4-Methoxy-3,5-dimethyl-pyridin-2-yl)methyl acetate
CAS:<p>4-Methoxy-3,5-dimethyl-pyridin-2-yl)methyl acetate is a chemical intermediate that is used in the manufacture of pharmaceuticals and other fine chemicals. It has been found to be a useful scaffold for the synthesis of other compounds. This compound may also be used as a building block or reaction component in research. 4-Methoxy-3,5-dimethyl-pyridin-2-yl)methyl acetate has a CAS number of 91219-90-8 and can be purchased from suppliers such as TCI America.</p>Formula:C11H15NO3Purity:Min. 95%Color and Shape:White PowderMolecular weight:209.24 g/molClopidogrel carboxylic acid
CAS:<p>Clopidogrel is a potent inhibitor of the platelet aggregation. It reduces blood clotting by inhibiting the ADP receptor on the surface of platelets, thereby inhibiting the aggregation and adhesion of platelets. Clopidogrel has been shown to be effective in preventing thrombosis, myocardial infarction (heart attack), and stroke. Clopidogrel inhibits the activity of cytochrome P450 3A4 (CYP3A4) and p2Y 12 receptors. Clopidogrel has been shown to have synergic effects with nonsteroidal anti-inflammatory drugs (NSAIDs). The polymorphic nature of Clopidogrel can be monitored using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantification in biological samples such as human serum and plasma.</p>Formula:C15H14ClNO2SPurity:Min. 95%Molecular weight:307.8 g/mol1-Adamantyl(amino)acetic acid hydrochloride
CAS:<p>1-Adamantyl(amino)acetic acid hydrochloride is an organic compound that is used as a versatile building block and intermediate in the synthesis of complex compounds. It reacts with nitric acid to form 1-Adamantyl nitrate, which is a useful reagent for organic synthesis. This compound has CAS number 16091-96-6 and can be found on the list of speciality chemicals. It is a fine chemical with high quality and is useful for research purposes.</p>Formula:C12H19NO2·HClPurity:Min. 95%Color and Shape:PowderMolecular weight:245.75 g/mol1,1'-Ferrocenedicarboxylic acid
CAS:Controlled Product<p>Ferrocene is a polycyclic aromatic hydrocarbon consisting of two fused cyclopentadiene rings. It is used in organic synthesis as a source of one equivalent of ferrocenium cation, which is useful as a catalyst for hydrogenation and hydroformylation reactions. Ferrocene-based polymers are layered materials that have been studied as transducers or sensors. They can be used to detect small changes in the environment, such as pH or temperature. Ferrocene-based polymers can also be used to make an electrode that detects antibodies, which are proteins produced by the immune system. Immunosensors are devices that use antibodies to detect the presence of antigens in blood or other fluids. The setup for this type of immunosensor consists of an antibody immobilized on an electrode surface, with a layer of material containing the antigen placed on top and covered with a solution containing ferrocene molecules. When an antibody binds to the antigen at the interface between these</p>Formula:C12H10FeO4Purity:Min. 95%Color and Shape:Orange To Brown To Orange Brown SolidMolecular weight:274.05 g/mol3-Cyano-4-fluorobenzoic acid
CAS:<p>3-Cyano-4-fluorobenzoic acid is a fluorinated analog of 3-cyano-4-fluorobenzoic acid, which has been shown to be effective in the treatment of prostate cancer. It is a prodrug that is metabolized by activated esterases to release the active form. The 18F radiolabeled form of 3-Cyano-4-fluorobenzoic acid has a high affinity for prostate carcinoma cells and has been used as a diagnostic agent. This drug also has an excellent pharmacokinetic profile and can be used as a nonradioactive tracer for imaging tumor cells in vivo.</p>Formula:C8H4FNO2Purity:Min. 95%Color and Shape:White To Off-White SolidMolecular weight:165.12 g/mol3-Bromo-5-methoxybenzoic acid
CAS:<p>3-Bromo-5-methoxybenzoic acid is a cytotoxic agent that inhibits the activity of acid transporter, which is involved in the transport of organic acids from the cell to the blood. It is used as an antineoplastic agent for animal studies and has been shown to have a safety profile similar to benzbromarone. 3-Bromo-5-methoxybenzoic acid also inhibits uricosuric activity in mouse hepatocytes and metabolic activation in mice. This compound has inhibitory effects on mouse liver cells and can be used for the treatment of liver cancer.</p>Formula:C8H7BrO3Purity:Min. 95%Molecular weight:231.04 g/mol2-Chloro-5-(4-chloro-5-difluoromethoxy-1-methylpyrazol-3-yl)-4-fluorophenoxyacetic acid monohydrate
CAS:<p>2-Chloro-5-(4-chloro-5-difluoromethoxy-1-methylpyrazol-3-yl)-4-fluorophenoxyacetic acid monohydrate (2,4,5P) is a phenoxy herbicide that has been shown to be an effective broadleaf and grass weed control agent. 2,4,5P is a granule formulation that can be applied by helicopter or ground equipment. It has synergistic effects with glyphosate when applied together to soybean plants and can be used in combination with other herbicides for more effective weed control.</p>Formula:C13H9Cl2F3N2O·H2OPurity:Min. 95%Color and Shape:White PowderMolecular weight:355.14 g/mol7-Amino-3-cephem-4-carboxylic acid
CAS:<p>Used in synthesis of Cephalosporin antibiotics</p>Formula:C7H8N2O3SPurity:Min. 95%Color and Shape:White Slightly Yellow PowderMolecular weight:200.22 g/molCyanuric acid
CAS:<p>Cyanuric acid is a chemical substance that is used in the manufacturing of polymer compositions. It has been shown to be an effective inhibitor of bcl-2 protein and has been used as a matrix for analytical methods such as chromatographic analysis. The compound has also been shown to have a high rate constant, which may be due to hydrogen bonding interactions with melamine. Cyanuric acid is soluble in water vapor and its biochemical properties are similar to other compounds with similar structures.</p>Formula:C3H3N3O3Purity:Min. 95%Color and Shape:White To Light (Or Pale) Yellow SolidMolecular weight:129.07 g/molrac threo-9,10-Dihydroxystearic acid
CAS:<p>Rac Threo-9,10-dihydroxystearic acid is a fine chemical that is used as a versatile building block for complex compounds. It has been used in research to generate new compounds and as a reagent for the synthesis of speciality chemicals. Rac Threo-9,10-dihydroxystearic acid is also useful as an intermediate in reactions with high yields, or as a scaffold for the synthesis of new molecules. This compound can be used as an additive to cosmetics and other products. Rac Threo-9,10-dihydroxystearic acid is not listed on the U.S. Environmental Protection Agency (EPA) TSCA Chemical Substance Inventory.</p>Formula:C18H36O4Purity:Min. 95%Color and Shape:PowderMolecular weight:316.48 g/molEthyl indole-7-carboxylate
CAS:<p>Ethyl indole-7-carboxylate is a fine chemical that is used as a versatile building block for the synthesis of complex compounds. It can act as a research chemical, reagent, or specialty chemical. This compound has been used to prepare various useful intermediates and reaction components, such as 4-chloro-3-nitrobenzaldehyde and 3-(2,6-dimethoxyphenyl)acrylonitrile. The CAS number for ethyl indole-7-carboxylate is 205873-58-1.</p>Purity:Min. 95%1-Methyluric acid
CAS:Controlled Product<p>1-Methyluric acid is a purine derivative that is a metabolite of caffeine. It is formed by the hepatic cytochrome P450 enzyme system and excreted in the urine. 1-Methyluric acid has been shown to be metabolized by rat liver microsomal enzymes, with the production of malonic acid, which may be responsible for its observed hepatotoxicity. The drug has also been shown to have an antibody response in rats and has been found to inhibit the activity of human liver enzymes. It also inhibits rat kidney enzyme activities and causes renal toxicity in rats. There are many drug interactions that can occur with 1-methyluric acid, including those with warfarin, phenytoin, carbamazepine, and diazepam. This drug should not be used in patients with severe renal impairment or chronic renal failure because it can cause acute renal failure due to its high degree of protein binding and rapid elimination from the body.</p>Formula:C6H6N4O3Purity:Min. 98 Area-%Color and Shape:White PowderMolecular weight:182.14 g/mol1,7-Dimethyluric acid
CAS:Controlled Product<p>1,7-Dimethyluric acid (1,7-DMUA) is a metabolite of caffeine that is excreted in urine. 1,7-DMUA has been shown to be an analytical marker for the study of drug interactions. 1,7-DMUA has also been found to be a biomarker for obesity and may be a useful tool for the diagnosis of metabolic syndrome.</p>Formula:C7H8N4O3Purity:Min. 95%Color and Shape:White To Light (Or Pale) Red SolidMolecular weight:196.16 g/mol

